
Copyright  1996 by Addison-Wesley Publishing Company 1

Chapter 1

Pointers, Arrays, and Structures

Copyright  1996 by Addison-Wesley Publishing Company 2

Pointer illustration

X = 5

Y = 7

1000

(&X) 1000

(&Y) 1004

(&Ptr) 1200

5

Ptr X

Copyright  1996 by Addison-Wesley Publishing Company 3

Result of *Ptr=10

X = 10

Y = 7

Ptr = &X = 1000

(&X) 1000

(&Y) 1004

(&Ptr) 1200

10

Ptr X

Copyright  1996 by Addison-Wesley Publishing Company 4

Uninitialized pointer

X = 5

Y = 7

Ptr = ?

(&X) 1000

(&Y) 1004

(&Ptr) 1200

5

Ptr X

Copyright  1996 by Addison-Wesley Publishing Company 5

(a) Initial state; (b) Ptr1=Ptr2 starting from initial state;
(c) *Ptr1=*Ptr2 starting from initial state

Ptr1 X Ptr1 X Ptr1

Ptr2 Y Ptr2 Y Ptr2

5

7

5

7

(a) (b)

Copyright  1996 by Addison-Wesley Publishing Company 6

Memory model for arrays (assumes 4 byte int); declara-
tion is int A[3]; int i;

A[0]

A[1]

A[2]

A=1000

&A[0] (1000)

&A[1] (1004)

&A[2] (1008)

&A (5620)

i&i (1012)

...

Copyright  1996 by Addison-Wesley Publishing Company 7

1 size_t strlen(const char *Str);
2 char * strcpy(char *Lhs, const char *Rhs);
3 char * strcat(char *Lhs, const char *Rhs);
4 int strcmp(const char *Lhs, const char *Rhs);

Some of the string routines in <string.h>

Copyright  1996 by Addison-Wesley Publishing Company 8

1 void
2 F(int i)
3 {
4 int A1[10];
5 int *A2 = new int [10];
6
7 ...
8 G(A1);
9 G(A2);

10
11 // On return, all memory associated with A1 is freed
12 // On return, only the pointer A2 is freed;
13 // 10 ints have leaked
14 // delete [] A2; // This would fix the leak
15 }

Two ways to allocate arrays; one leaks memory

Copyright  1996 by Addison-Wesley Publishing Company 9

int *Original = A2; // 1. Save pointer to the original
A2 = new int [12]; // 2. Have A2 point at more memory
for(int i = 0; i < 10; i++) // 3. Copy the old data over
 A2[i] = Original[i];
delete [] Original; // 4. Recycle the original array

Memory reclamation

A1 A2

Copyright  1996 by Addison-Wesley Publishing Company 10

Array expansion: (a) starting point: A2 points at 10 inte-
gers; (b) after step 1: Original points at the 10 inte-
gers; (c) after steps 2 and 3: A2 points at 12 integers, the
first 10 of which are copied from Original ; (d) after step
4: the 10 integers are freed

A2

A2

A2

A2

Original

Original

Original

(a)

(b)

(c)

(d)

Copyright  1996 by Addison-Wesley Publishing Company 11

Pointer arithmetic: X=&A[3]; Y=X+4

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

A Ptr X Y

Copyright  1996 by Addison-Wesley Publishing Company 12

1 // Test that Strlen1 and Strlen2 give same answer
2 // Source file is ShowProf.cpp
3
4 #include <iostream.h>
5
6 main()
7 {
8 char Str[512];
9

10 while(cin >> Str)
11 {
12 if(Strlen1(Str) != Strlen2(Str))
13 cerr << "Oops!!!!" << endl;
14 }
15
16 return 0;
17 }

 %time cumsecs #call ms/call name
 26.6 0.34 25145 0.01 ___rs__7istreamFPc
 22.7 0.63 25144 0.01 _Strlen2__FPCc
 14.8 0.82 mcount
 12.5 0.98 25144 0.01 _Strlen1__FPCc
 8.6 1.09 25145 0.00 _do_ipfx__7istreamFi
 6.2 1.17 25145 0.00 _eatwhite__7istreamFv
 4.7 1.23 204 0.29 _read
 3.1 1.27 1 40.00 _main

First eight lines from prof for program

 %time cumsecs #call ms/call name
 34.4 0.31 mcount
 26.7 0.55 25145 0.01 ___rs__7istreamFPc
 8.9 0.63 25145 0.00 _do_ipfx__7istreamFi
 6.7 0.69 25144 0.00 _Strlen1__FPCc
 6.7 0.75 25144 0.00 _Strlen2__FPCc
 6.7 0.81 25145 0.00 _eatwhite__7istreamFv
 6.7 0.87 204 0.29 _read
 3.3 0.90 1 30.00 _main

First eight lines from prof with highest optimization

Copyright  1996 by Addison-Wesley Publishing Company 13

struct Student
{
 char FirstName[40];
 char LastName[40];
 int StudentNum;
 double GradePointAvg;
};

Student structure

StudentNum

GradePointAvg

FirstName

LastName

Copyright  1996 by Addison-Wesley Publishing Company 14

Illustration of a shallow copy in which only pointers are cop-
ied

12345 12345

"Nina"

"Weiss"

S
FirstName

LastName

EmployeeNum

Copyright  1996 by Addison-Wesley Publishing Company 15

Illustration of a simple linked list

A0 A1 A2

First Last

Copyright  1996 by Addison-Wesley Publishing Company 16

Chapter 2

Objects and Classes

Copyright  1996 by Addison-Wesley Publishing Company 17

1 // MemoryCell class
2 // int Read() --> Returns the stored value
3 // void Write(int X) --> X is stored
4
5 class MemoryCell
6 {
7 public:
8 // Public member functions
9 int Read() { return StoredValue; }

10 void Write(int X) { StoredValue = X; }
11 private:
12 // Private internal data representation
13 int StoredValue;
14 };

A complete declaration of a MemoryCell class

Copyright  1996 by Addison-Wesley Publishing Company 18

MemoryCell members: Read and Write are acces-
sible, but StoredValue is hidden

Read Write StoredV

Copyright  1996 by Addison-Wesley Publishing Company 19

1 // Exercise the MemoryCell class
2
3 main()
4 {
5 MemoryCell M;
6
7 M.Write(5);
8 cout << "Cell contents are " << M.Read() << '\n';
9 // The next line would be illegal if uncommented

10 // cout << "Cell contents are " << M.StoredValue << '\n';
11 return 0;
12 }

A simple test routine to show how MemoryCell objects
are accessed

Copyright  1996 by Addison-Wesley Publishing Company 20

1 // MemoryCell interface
2 // int Read() --> Returns the stored value
3 // void Write(int X) --> X is stored
4
5 class MemoryCell
6 {
7 public:
8 int Read();
9 void Write(int X);

10 private:
11 int StoredValue;
12 };
13
14
15
16 // Implementation of the MemoryCell class members
17
18 int
19 MemoryCell::Read()
20 {
21 return StoredValue;
22 }
23
24 void
25 MemoryCell::Write(int X)
26 {
27 StoredValue = X;
28 }

A more typical MemoryCell declaration in which inter-
face and implementation are separated

Copyright  1996 by Addison-Wesley Publishing Company 21

1 // BitArray class: support access to an array of bits
2 //
3 // CONSTRUCTION: with (a) no initializer or (b) an integer
4 // that specifies the number of bits
5 // All copying of BitArray objects is DISALLOWED
6 //
7 // ******************PUBLIC OPERATIONS**********************
8 // void ClearAllBits() --> Set all bits to zero
9 // void SetBit(int i) --> Turn bit i on

10 // void ClearBit(int i) --> Turn bit i off
11 // int GetBit(int i) --> Return status of bit i
12 // int NumItems() --> Return capacity of bit array
13
14 #include <iostream.h>
15
16 class BitArray
17 {
18 public:
19 // Constructor
20 BitArray(int Size = 320); // Basic constructor
21
22 // Destructor
23 ~BitArray() { delete [] TheArray; }
24
25 // Member Functions
26 void ClearAllBits();
27 void SetBit(int i);
28 void ClearBit(int i);
29 int GetBit(int i) const;
30 int NumItems() const { return N; }
31 private:
32 // 3 data members
33 int *TheArray; // The bit array
34 int N; // Number of bits
35 int ArraySize; // Size of the array
36
37 enum { IntSz = sizeof(int) * 8 };
38 int IsInRange(int i) const;// Check range with error msg
39
40 // Disable operator= and copy constructor
41 const BitArray & operator=(const BitArray & Rhs);
42 BitArray(const BitArray & Rhs);
43 };

Interface for BitArray class

Copyright  1996 by Addison-Wesley Publishing Company 22

BitArray members

SetBit

NumItems

TheArrayN ArraySize

Constructor

IsInRange

Destructor

ClearBitGetBit

ClearAllBits

Copy constru

Copy assignm

IntSize

this

Visible members Hidden member functions Hidden data

Copyright  1996 by Addison-Wesley Publishing Company 23

1 BitArray A; // Call with Size = 320
2 BitArray B(50); // Call with Size = 50
3 BitArray C = 50; // Same as above
4 BitArray D[50]; // Calls 50 constructors, with Size 320
5 BitArray *E = new BitArray; // Allocates BitArray of Size 320
6 E = new BitArray(20);// Allocates BitArray of size 20; leaks
7 BitArray F = "wrong"; // Does not match basic constructor
8 BitArray G(); // This is wrong!

Construction examples

Copyright  1996 by Addison-Wesley Publishing Company 24

Chapter 3

Templates

Copyright  1996 by Addison-Wesley Publishing Company 25

Array position 0 1 2 3 4 5

Initial State: 8 5 9 2 6 3

After A[0..1] is sorted: 5 8 9 2 6 3

After A[0..2] is sorted: 5 8 9 2 6 3

After A[0..3] is sorted: 2 5 8 9 6 3

After A[0..4] is sorted: 2 5 6 8 9 3

After A[0..5] is sorted: 2 3 5 6 8 9

Basic action of insertion sort (shaded part is sorted)

Copyright  1996 by Addison-Wesley Publishing Company 26

Array position 0 1 2 3 4 5

Initial State: 8 5

After A[0..1] is sorted: 5 8 9

After A[0..2] is sorted: 5 8 9 2

After A[0..3] is sorted: 2 5 8 9 6

After A[0..4] is sorted: 2 5 6 8 9 3

After A[0..5] is sorted: 2 3 5 6 8 9

Closer look at action of insertion sort (dark shading indi-
cates sorted area; light shading is where new element was
placed)

Copyright  1996 by Addison-Wesley Publishing Company 27

1 // Typical template interface
2 template <class Etype >
3 class ClassName
4 {
5 public:
6 // Public members
7 private:
8 // Private members
9 };

10
11
12 // Typical member implementation
13 template <class Etype >
14 ReturnType
15 ClassName <Etype >:: MemberName(Parameter List) /* const */
16 {
17 // Member body
18 }

Typical layout for template interface and member functions

Copyright  1996 by Addison-Wesley Publishing Company 28

Chapter 4

Inheritance

Copyright  1996 by Addison-Wesley Publishing Company 29

1 class Derived : public Base
2 {
3 // Any members that are not listed are inherited unchanged
4 // except for constructor, destructor,
5 // copy constructor, and operator=
6 public:
7 // Constructors, and destructors if defaults are not good
8 // Base members whose definitions are to change in Derived
9 // Additional public member functions

10 private:
11 // Additional data members (generally private)
12 // Additional private member functions
13 // Base members that should be disabled in Derived
14 };

General layout of public inheritance

Copyright  1996 by Addison-Wesley Publishing Company 30

Public inheritance situation Public Protected Private

Base class member function accessing M Yes Yes Yes
Derived class member function accessing M Yes Yes No

main , accessing B.M Yes No No
main , accessing D.M Yes No No

Derived class member function accessing Yes No No
B is an object of the base class; D is an object of the publicly derived class; M is a

member of the base class.

Access rules that depend on what M ’s visibility is in the
base class

Copyright  1996 by Addison-Wesley Publishing Company 31

Public inheritance situation Public Protected Private

F accessing B.MB Yes Yes Yes
F accessing D.MD Yes No No
 F accessing D.MB Yes Yes Yes

B is an object of the base class; D is an object of the publicly derived class; MB is a
member of the base class. MD is a member of the derived class. F is a friend of the

base class (but not the derived class)

Friendship is not inherited

Copyright  1996 by Addison-Wesley Publishing Company 32

1 const VectorSize = 20;
2 Vector<int> V(VectorSize);
3 BoundedVector<int> BV(VectorSize, 2 * VectorSize - 1);
4 ...
5 BV[VectorSize] = V[0];

Vector and BoundedVector classes with calls to
operator[] that are done automatically and correctly

Copyright  1996 by Addison-Wesley Publishing Company 33

1 Vector<int> *Vptr;
2 const int Size = 20;
3 cin >> Low;
4 if(Low)
5 Vptr = new BoundedVector<int>(Low, Low + Size - 1);
6 else
7 Vptr = new Vector<int>(Size)
8
9 ...

10 (*Vptr)[Low] = 0; // What does this mean?

Vector and BoundedVector classes

Copyright  1996 by Addison-Wesley Publishing Company 34

The hierarchy of shapes used in an inheritance example

Square

Rectangle

Shape

Circle

Copyright  1996 by Addison-Wesley Publishing Company 35

1. Nonvirtual functions: Overloading is resolved at compile
time. To ensure consistency when pointers to objects are
used, we generally use a nonvirtual function only when the
function is invariant over the inheritance hierarchy (that is,
when the function is never redefined). The exception to this
rule is that constructors are always nonvirtual, as mentioned
in Section 4.5.

2. Virtual functions: Overloading is resolved at run time. The
base class provides a default implementation that may be
overridden by the derived classes. Destructors should be
virtual functions, as mentioned in Section 4.5.

3. Pure virtual functions: Overloading is resolved at run time.
The base class provides no implementation. The absence of
a default requires that the derived classes provide an imple-
mentation.

Summary of nonvirtual, virtual, and pure virtual functions

Copyright  1996 by Addison-Wesley Publishing Company 36

1. Provide a new constructor.
2. Examine each virtual function to decide if we are willing to

accept its defaults; for each virtual function whose defaults
we do not like, we must write a new definition.

3. Write a definition for each pure virtual function.
4. Write additional member functions if appropriate.

Programmer responsibilities for derived class

Copyright  1996 by Addison-Wesley Publishing Company 37

Chapter 5

Algorithm Analysis

Copyright  1996 by Addison-Wesley Publishing Company 38

Running times for small inputs

0

2

4

6

8

10

10 20 30 40 50 60 70 80

Linear
O(N log N)

Quadratic
Cubic

R
un

ni
ng

 t
im

e
(m

ill
is

ec
o

nd
s)

Input size (N)

Copyright  1996 by Addison-Wesley Publishing Company 39

Running time for moderate inputs

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000

Linear
O(N log N)

Quadratic
Cubic

R
u

nn
in

g
tim

e
 (

se
co

nd
s)

Input Size (N)

Copyright  1996 by Addison-Wesley Publishing Company 40

Function Name

Constant

Logarithmic

Log-squared

Linear

N log N

Quadratic

Cubic

Exponential

Functions in order of increasing growth rate

c

log N

Nlog2

N

N log N

N2

N3

2N

Copyright  1996 by Addison-Wesley Publishing Company 41

The subsequences used in Theorem 5.2

i j j +1 q

< 0 Sj+1,q

<Sj+1,q

Copyright  1996 by Addison-Wesley Publishing Company 42

The subsequences used in Theorem 5.3. The sequence
from p to q has sum at most that of the subsequence from i
to q. On the left, the sequence from i to q is itself not the
maximum (by Theorem 5.2). On the right, the sequence
from i to q has already been seen.

i j j +1 q

Si,q

p-1 p

>=0 <=Si,q

i

Si,q

p-1 p

>=0 <=Si,q

Copyright  1996 by Addison-Wesley Publishing Company 43

DEFINITION: (Big-Oh) if there are pos-
itive constants c and such that when

.

DEFINITION: (Big-Omega) if there are
positive constants c and such that when

.

DEFINITION: (Big-Theta) if and only if
 and .

DEFINITION: (Little-Oh) if there are
positive constants c and such that when

.

T N() O F N()()=
N0 T N() cF N()≤

N N0≥

T N() Ω F N()()=
N0 T N() cF N()≥

N N0≥

T N() Θ F N()()=
T N() O F N()()= T N() Ω F N()()=

T N() o F N()()=
N0 T N() cF N()<

N N0≥

Copyright  1996 by Addison-Wesley Publishing Company 44

Mathematical expression Relative rates of growth

Growth of is growth of

Growth of is growth of

Growth of is growth of

Growth of is growth of

Meanings of the various growth functions

T N() O F N()()= T N() ≤ F N()

T N() Ω F N()()= T N() ≥ F N()

T N() Θ F N()()= T N() = F N()

T N() o F N()()= T N() < F N()

Copyright  1996 by Addison-Wesley Publishing Company 45

10 0.00103 0.00045 0.00066 0.00034

100 0.47015 0.01112 0.00486 0.00063

1,000 448.77 1.1233 0.05843 0.00333

10,000 NA 111.13 0.68631 0.03042

100,000 NA NA 8.01130 0.29832

Observed running times (in seconds) for various maximum
contiguous subsequence sum algorithms

N O N3() O N2() O(N log N) O(N)

Copyright  1996 by Addison-Wesley Publishing Company 46

CPU time
(milliseconds)

10,000 100 0.01000000 0.00000100 0.00075257

20,000 200 0.01000000 0.00000050 0.00069990

40,000 440 0.01100000 0.00000027 0.00071953

80,000 930 0.01162500 0.00000015 0.00071373

160,000 1960 0.01225000 0.00000008 0.00070860

320,000 4170 0.01303125 0.00000004 0.00071257

640,000 8770 0.01370313 0.00000002 0.00071046

Empirical running time for N binary searches in an N-item
array

N T T N⁄ T N2⁄ T N log N()⁄

Copyright  1996 by Addison-Wesley Publishing Company 47

Chapter 6

Data Structures

Copyright  1996 by Addison-Wesley Publishing Company 48

1 #include <iostream.h>
2 #include "Stack.h"
3
4 // Simple test program for stacks
5
6 main()
7 {
8 Stack<int> S;
9

10 for(int i = 0; i < 5; i++)
11 S.Push(i);
12
13 cout << "Contents:";
14 do
15 {
16 cout << ' ' << S.Top();
17 S.Pop();
18 } while(!S.IsEmpty());
19 cout << '\n';
20
21 return 0;
22 }

Sample stack program; output is
Contents: 4 3 2 1 0

Copyright  1996 by Addison-Wesley Publishing Company 49

Stack model: input to a stack is by Push , output is by
Top , deletion is by Pop

Stack

Pop, TopPush

Copyright  1996 by Addison-Wesley Publishing Company 50

1 #include <iostream.h>
2 #include "Queue.h"
3
4 // Simple test program for queues
5
6 main()
7 {
8 Queue<int> Q;
9

10 for(int i = 0; i < 5; i++)
11 Q.Enqueue(i);
12
13 cout << "Contents:";
14 do
15 {
16 cout << ' ' << Q.Front();
17 Q.Dequeue();
18 } while(!Q.IsEmpty());
19 cout << '\n';
20
21 return 0;
22 }

Sample queue program; output is
Contents:0 1 2 3 4

Copyright  1996 by Addison-Wesley Publishing Company 51

Queue model: input is by Enqueue , output is by Front ,
deletion is by Dequeue

Queue
Enqueue Dequeue

Front

Copyright  1996 by Addison-Wesley Publishing Company 52

1 #include <iostream.h>
2 #include "List.h"
3
4 // Simple test program for lists
5
6 main()
7 {
8 List<int> L;
9 ListItr<int> P = L;

10
11 // Repeatedly insert new items as first elements
12 for(int i = 0; i < 5; i++)
13 {
14 P.Insert(i);
15 P.Zeroth(); // Reset P to the start
16 }
17
18 cout << "Contents:";
19 for(P.First(); +P; ++P)
20 cout << ' ' << P();
21 cout << "end\n";
22
23 return 0;
24 }

Sample list program; output is Contents: 4 3 2 1
0 end

Copyright  1996 by Addison-Wesley Publishing Company 53

Link list model: inputs are arbitrary and ordered, any item
may be output, and iteration is supported, but this data
structure is not time-efficient

List

Insert Find and Remove
any item by name
or by rank

Copyright  1996 by Addison-Wesley Publishing Company 54

A simple linked list

A0 A1 A2

First Last

Copyright  1996 by Addison-Wesley Publishing Company 55

A tree

A

B C D E

F G H I J

K

Copyright  1996 by Addison-Wesley Publishing Company 56

Expression tree for (a+b)*(c-d)

*

+ -

a b c d

Copyright  1996 by Addison-Wesley Publishing Company 57

1 #include <iostream.h>
2 #include "Bst.h"
3
4 // Simple test program for binary search trees
5
6 main()
7 {
8 SearchTree<String> T;
9

10 T.Insert("Becky");
11
12 // Simple use of Find/WasFound
13 // Appropriate if we need a copy
14 String Result1 = T.Find("Becky");
15 if(T.WasFound())
16 cout << "Found " << Result1 << ';';
17 else
18 cout << "Becky not found;";
19
20 // More efficient use of Find/WasFound
21 // Appropriate if we only need to examine
22 const String & Result2 = T.Find("Mark");
23 if(T.WasFound())
24 cout << " Found " << Result2 << ';';
25 else
26 cout << " Mark not found; ";
27
28 cout << '\n';
29
30 return 0;
31 }

Sample search tree program;
output is Found Becky; Mark not found;

Copyright  1996 by Addison-Wesley Publishing Company 58

Binary search tree model; the binary search is extended to
allow insertions and deletions

Binary

Insert Find and Remove
any item by name
or rank

Search Tree

Copyright  1996 by Addison-Wesley Publishing Company 59

1 #include <iostream.h>
2 #include "Hash.h"
3
4 // A good hash function is given in Chapter 19
5 unsigned int Hash(const String & Element, int TableSize);
6
7 // Simple test program for hash tables
8
9 main()

10 {
11 HashTable<String> H;
12
13 H.Insert("Becky");
14
15 const String & Result2 = H.Find("Mark");
16 if(H.WasFound())
17 cout << " Found " << Result2 << ';';
18 else
19 cout << " Mark not found; ";
20
21 cout << '\n';
22
23 return 0;
24 }

Sample hash table program;
output is Found Becky; Mark not found;

Copyright  1996 by Addison-Wesley Publishing Company 60

The hash table model: any named item can be accessed or
deleted in essentially constant time

Insert Find and Remove
any item by name

Hash
Table

Copyright  1996 by Addison-Wesley Publishing Company 61

1 #include <iostream.h>
2 #include "BinaryHeap.h"
3
4 // Simple test program for priority queues
5
6 main()
7 {
8 BinaryHeap<int> PQ;
9

10 PQ.Insert(4); PQ.Insert(2); PQ.Insert(1);
11 PQ.Insert(5); PQ.Insert(0);
12
13 cout << "Contents:";
14 do
15 {
16 cout << ' ' << PQ.FindMin();
17 PQ.DeleteMin();
18 } while(!PQ.IsEmpty());
19 cout << '\n';
20
21 return 0;
22 }

Sample program for priority queues;
output is Contents: 0 1 2 3 4

Copyright  1996 by Addison-Wesley Publishing Company 62

Priority queue model: only the minimum element is acces-
sible

Priority
Queue

Insert
DeleteMin

FindMin

Copyright  1996 by Addison-Wesley Publishing Company 63

Data
Structure Access Comments

Stack Most recent only, Pop, Very very fast

Queue Least recent only, Dequeue , Very very fast

Linked list Any item

Search Tree Any item by name or rank, Average case, can be made
worst case

Hash Table Any named item, Almost certain

Priority Queue FindMin , ,

DeleteMin ,

Insert is on

average worst
case

Summary of some data structures

O 1()

O 1()

O(N)

O(log N)

O 1()

O 1()
O(log N)

O 1()
O(log N)

Copyright  1996 by Addison-Wesley Publishing Company 64

Chapter 7

Recursion

Copyright  1996 by Addison-Wesley Publishing Company 65

Stack of activation records

main()

S(4)

S(3)

S(2)TOP:

Copyright  1996 by Addison-Wesley Publishing Company 66

Trace of the recursive calculation of the Fibonacci numbers

F1

F2

F0

F3

F1

F4

F1

F2

F0

F5

F1

F2

F0

F3

F

Copyright  1996 by Addison-Wesley Publishing Company 67

• Divide: Smaller problems are solved recursively (except, of
course, base cases).

• Conquer: The solution to the original problem is then formed
from the solutions to the subproblems.

Divide-and-conquer algorithms

Copyright  1996 by Addison-Wesley Publishing Company 68

First Half Second Half

4 -3 5 -2 -1 2 6 -2 Values

4* 0 3 -2 -1 1 7* 5 Running Sums

Running Sum from the Center (*denotes maxi-
mum for each half)

Dividing the maximum contiguous subsequence problem
into halves

Copyright  1996 by Addison-Wesley Publishing Company 69

Trace of recursive calls for recursive maximum contiguous
subsequence sum algorithm

Copyright  1996 by Addison-Wesley Publishing Company 70

Assuming N is a power of 2, the solution to the equation
, with init ial condit ion is

.

Basic divide-and-conquer running time theorem

T N() 2T N 2⁄() N+= T 1() 1=
T N() N log N N+=

Copyright  1996 by Addison-Wesley Publishing Company 71

The so lu t i on to the equa t ion
, where and ,

is

if

if

if

General divide-and-conquer running time theo-
rem

T N() AT N B⁄() O Nk()+= A 1≥ B 1>

T N()









=

O N ABlog() A Bk>

O Nk Nlog() A Bk=

O Nk() A Bk<

Copyright  1996 by Addison-Wesley Publishing Company 72

Some of the subproblems that are solved recursively in
Figure 7.15

1

1 1

25 25 10 1 21

21

21

21

21 21 10 1062

2

61

21

42

31

32

 1

Copyright  1996 by Addison-Wesley Publishing Company 73

Alternative recursive algorithm for coin-changing problem

+

+

+

+

+

1

5

10

21

25

21 21 10 10

25 21 10 1 1

21 21 10 1

21 21

25 10 1 1 1

Copyright  1996 by Addison-Wesley Publishing Company 74

Chapter 8

Sorting Algorithms

Copyright  1996 by Addison-Wesley Publishing Company 75

• Words in a dictionary are sorted (and case distinctions are
ignored).

• Files in a directory are often listed in sorted order.
• The index of a book is sorted (and case distinctions are

ignored).
• The card catalog in a library is sorted by both author and title.
• A listing of course offerings at a university is sorted, first by

department and then by course number.
• Many banks provide statements that list checks in increasing

order (by check number).
• In a newspaper, the calendar of events in a schedule is gener-

ally sorted by date.
• Musical compact disks in a record store are generally sorted

by recording artist.
• In the programs that are printed for graduation ceremonies,

departments are listed in sorted order, and then students in
those departments are listed in sorted order.

Examples of sorting

Copyright  1996 by Addison-Wesley Publishing Company 76

Operators Definition

operator> (A, B) return B < A;

operator>=(A, B) return !(A < B);

operator<=(A, B) return !(B < A);

operator!=(A, B) return A < B || B < A;

operator==(A, B) return !(A < B || B < A);

Deriving the relational and equality operators from
operator<

Copyright  1996 by Addison-Wesley Publishing Company 77

Original 81 94 11 96 12 35 17 95 28 58 41 75 15

After 5-sort 35 17 11 28 12 41 75 15 96 58 81 94 95

After 3-sort 28 12 11 35 15 41 58 17 94 75 81 96 95

After 1-sort 11 12 15 17 28 35 41 58 75 81 94 95 96

Shellsort after each pass, if increment sequence is {1, 3, 5}

Copyright  1996 by Addison-Wesley Publishing Company 78

N Insertion
sort

Shellsort

Shell’s Odd gaps only Dividing by 2.2

1,000 122 11 11 9
2,000 483 26 21 23
4,000 1,936 61 59 54
8,000 7,950 153 141 114

16,000 32,560 358 322 269
32,000 131,911 869 752 575
64,000 520,000 2,091 1,705 1,249

Running time (milliseconds) of the insertion sort and
Shellsort with various increment sequences

Copyright  1996 by Addison-Wesley Publishing Company 79

Linear-time merging of sorted arrays (first four steps)

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 13 24 26 2 15 27 38

BptrAptr Cptr

1

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2 13

Copyright  1996 by Addison-Wesley Publishing Company 80

Linear-time merging of sorted arrays (last four steps)

1 13 24 26 2 15 27 38

BptrAptr Cp

1 2 13 15

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

Copyright  1996 by Addison-Wesley Publishing Company 81

The basic algorithm Quicksort(S) consists of the following four
steps:

1. If the number of elements in S is 0 or 1, then return.
2. Pick any element v in S. This is called the pivot.
3. Partition S – {v} (the remaining elements in S) into two dis-

joint groups: L = and R =
.

4. Return the result of Quicksort(L) followed by v followed by
Quicksort(R).

Basic quicksort algorithm

x S v{ }– x v≤∈{ }
x S v{ }–∈ x v≥{ }

Copyright  1996 by Addison-Wesley Publishing Company 82

The steps of quicksort

13

81

92

43

65

31
57

26
75

0

Select pivot

13

81

92

43

65

31
57

26
75

0

Partition

13
0

26
43

57

31 65
92

Quicksort Quicksor

0 13 26 31 43 57 65 7

 0 13 26 31 43 57 65 75 81 92

large itemsmall items

Copyright  1996 by Addison-Wesley Publishing Company 83

Because recursion allows us to take the giant leap of faith, the
correctness of the algorithm is guaranteed as follows:

• The group of small elements is sorted, by virtue of the recur-
sion.

• The largest element in the group of small elements is not
larger than the pivot, by virtue of the partition.

• The pivot is not larger than the smallest element in the group
of large elements, by virtue of the partition.

• The group of large elements is sorted, by virtue of the recur-
sion.

Correctness of quicksort

Copyright  1996 by Addison-Wesley Publishing Company 84

8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: pivot element 6 is placed at the end

8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: i stops at large element 8; j stops
at small element 2

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm: out-of-order elements 8 and 2 are
swapped

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm: i stops at large element 9; j stops
at small element 5

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: out-of-order elements 9 and 5 are
swapped

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: i stops at large element 9; j stops
at small element 3

2 1 4 5 0 3 6 8 7 9

Partitioning algorithm: swap pivot and element in position i

Copyright  1996 by Addison-Wesley Publishing Company 85

8 1 4 9 6 3 5 2 7 0

Original array

0 1 4 9 6 3 5 2 7 8

Result of sorting three elements (first, middle, and last)

0 1 4 9 7 3 5 2 6 8

Result of swapping the pivot with next to last element

Copyright  1996 by Addison-Wesley Publishing Company 86

• We should not swap the pivot with the element in the last
position. Instead, we should swap it with the element in the
next to last position.

• We can start i at Low+1 and j at High-2 .
• We are guaranteed that, whenever i searches for a large ele-

ment, it will stop because in the worst case it will encounter
the pivot (and we stop on equality).

• We are guaranteed that, whenever j searches for a small ele-
ment, it will stop because in the worst case it will encounter
the first element (and we stop on equality).

Median-of-three partitioning optimizations

Copyright  1996 by Addison-Wesley Publishing Company 87

1. If the number of elements in S is 1, then presumably k is
also 1, and we can return the single element in S.

2. Pick any element v in S. This is the pivot.
3. Partition S – {v} into L and R, exactly as was done for

quicksort.
4. If k is less than or equal to the number of elements in L, then

the item we are searching for must be in L. Call Quickselect(
L, k) recursively. Otherwise, if k is exactly equal to one
more than the number of items in L, then the pivot is the kth
smallest element, and we can return it as the answer. Other-
wise, the kth smallest element lies in R, and it is the (k – |L| –
1)th smallest element in R. Again, we can make a recursive
call and return the result.

Quickselect algorithm

Copyright  1996 by Addison-Wesley Publishing Company 88

Using an array of pointers to sort

200 100 400 500 300

A[0] A[1] A[2] A[3] A[4]

Ptr[0] Ptr[1] Ptr[2] Ptr[3] Ptr[4]

Copyright  1996 by Addison-Wesley Publishing Company 89

Data structure used for in-place rearrangement

200 100 400 500 300

A[0] A[1] A[2] A[3] A[4]

Loc[0] Loc[1] Loc[2] Loc[3] Loc[4]

1 0 4 2 3

Copyright  1996 by Addison-Wesley Publishing Company 90

Chapter 9

Randomization

Copyright  1996 by Addison-Wesley Publishing Company 91

Winning Tickets 0 1 2 3 4 5

Frequency 0.135 0.271 0.271 0.180 0.090 0.036

Distribution of lottery winners if expected number of win-
ners is 2

Copyright  1996 by Addison-Wesley Publishing Company 92

An important nonuniform distribution that occurs in simula-
tions is the Poisson distribution. Occurrences that happen under
the following circumstances satisfy the Poisson distribution:

• The probability of one occurrence in a small region is propor-
tional to the size of the region.

• The probability of two occurrences in a small region is pro-
portional to the square of the size of the region and is usually
small enough to be ignored.

• The event of getting k occurrences in one region and the event
of getting j occurrences in another region disjoint from the
first region are independent. (Technically this statement
means that you can get the probability of both events simulta-
neously occurring by multiplying the probability of individ-
ual events.)

• The mean number of occurrences in a region of some size is
known.

Then if the mean number of occurrences is the constant a, then
the probability of exactly k occurrences is .

Poisson distribution

ake a– k!⁄

Copyright  1996 by Addison-Wesley Publishing Company 93

Chapter 10

Fun and Games

Copyright  1996 by Addison-Wesley Publishing Company 94

0 1 2 3
0 t h i s

1 w a t s

2 o a h g

3 f g d t

Sample word search grid

Copyright  1996 by Addison-Wesley Publishing Company 95

for each word W in the word list
 for each row R
 for each column C
 for each direction D
 check if W exists at row R, column C
 in direction D

Brute-force algorithm for word search puzzle

Copyright  1996 by Addison-Wesley Publishing Company 96

for each row R
 for each column C
 for each direction D
 for each word length L
 check if L chars starting at row R column C
 in direction D form a word

Alternate algorithm for word search puzzle

Copyright  1996 by Addison-Wesley Publishing Company 97

for each row R
 for each column C
 for each direction D
 for each word length L
 check if L chars starting at row R column
 C in direction D form a word
 if they do not form a prefix,
 break; // the innermost loop

Improved algorithm for word search puzzle; incorporates a
prefix test

Copyright  1996 by Addison-Wesley Publishing Company 98

1. If the position is terminal (that is, can immediately be evalu-
ated), return its value.

2. Otherwise, if it is the computer’s turn to move, return the
maximum value of all positions reachable by making one
move. The reachable values are calculated recursively.

3. Otherwise, it is the human’s turn to move. Return the mini-
mum value of all positions reachable by making one move.
The reachable values are calculated recursively.

Basic minimax algorithm

Copyright  1996 by Addison-Wesley Publishing Company 99

Alpha-beta pruning: After H2A is evaluated, C2, which is the
minimum of the H2’s, is at best a draw. Consequently, it
cannot be an improvement over C1. We therefore do not
need to evaluate H2B, H2C, and H2D, and can proceed
directly to C3

C1 C3

DRAW

U

U

C2

H2A

DRAW

H2B

?

H2C

?

H2D

?

Copyright  1996 by Addison-Wesley Publishing Company 100

Two searches that arrive at identical positions

X

X O X

X O X

O X

X O

X

Copyright  1996 by Addison-Wesley Publishing Company 101

Chapter 11

Stacks and Compilers

Copyright  1996 by Addison-Wesley Publishing Company 102

Stack operations in balanced symbol algorithm

(
[
((

([] }*)*

{

[eof*

Errors (indicated by *):
 } when expecting)
) with no matching opening symb o
 [unmatched at end of input

Copyright  1996 by Addison-Wesley Publishing Company 103

Steps in evaluation of a postfix expression

1
2
1 -1

4
-1

1 2 - 4

1024
-1
^

3
1024

-1
3

3072
-1
*

6
3072

-1
6

18432
-1
*

2
7

18432
-1
2

2
2
7

18432
-1
2

4
7

18432
-1
^

2401
18432

-1
^

7
-1
/

Postfix Expression: 1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^

Copyright  1996 by Addison-Wesley Publishing Company 104

Infix expression Postfix expression Associativity

2 + 3 + 4 2 3 + 4 + Left associative: Input + is
lower than stack +

2 ^ 3 ^ 4 2 3 4 ^ ^ Right associative: Input ^ is
higher than stack ^

Associativity rules

Copyright  1996 by Addison-Wesley Publishing Company 105

• Operands: Immediately output.
• Close parenthesis: Pop stack symbols until an open parenthe-

sis is seen.
• Operator: Pop all stack symbols until we see a symbol of

lower precedence or a right associative symbol of equal pre-
cedence. Then push the operator.

• End of input: Pop all remaining stack symbols.

Various cases in operator precedence parsing

Copyright  1996 by Addison-Wesley Publishing Company 106

Infix to postfix conversion

Infix: 1 - 2 ^ 3 ^ 3 - (4 + 5 * 6) * 7

1

1

-

-

2

-
2

^

^
-

3

^
-

3

3

^
^
-

3

-

-
^^-

(

(
-

4

(
-

4

+

+
(
-

*

*

+
(
-

*

6

+
(
-

6

)

-
* +

*

*
-

7

*
7

Copyright  1996 by Addison-Wesley Publishing Company 107

Expression tree for (a+b)*(c-d)

*

+ -

a b a b

Copyright  1996 by Addison-Wesley Publishing Company 108

Chapter 12

Utilities

Copyright  1996 by Addison-Wesley Publishing Company 109

Character Code Frequency Total Bits

a 000 10 30
e 001 15 45
i 010 12 36
s 011 3 9
t 100 4 12

sp 101 13 39
nl 110 1 3

Total 174

A standard coding scheme

Copyright  1996 by Addison-Wesley Publishing Company 110

Representation of the original code by a tree

a e i s t sp nl

Copyright  1996 by Addison-Wesley Publishing Company 111

A slightly better tree

a e i s t sp

nl

Copyright  1996 by Addison-Wesley Publishing Company 112

Optimal prefix code tree

t

a

sp

nl

e

s

i

Copyright  1996 by Addison-Wesley Publishing Company 113

Character Code Frequency Total Bits

a 001 10 30
e 01 15 30
i 10 12 24
s 00000 3 15
t 0001 4 16

sp 11 13 26
nl 00001 1 5

Total 146

Optimal prefix code

Copyright  1996 by Addison-Wesley Publishing Company 114

Huffman’s algorithm after each of first three merges

i se ta sp
10 15 12 3 4 13

i te spa
10 15 12 4 13

T1

s

4

i spea
10 15 12 13

T2

T1

nls

8

spie
15 12 13

t

T2

T3

T1

nls

1

Copyright  1996 by Addison-Wesley Publishing Company 115

Huffman’s algorithm after each of last three merges

e
15

sp

T4

i

25

t

T2

T3

T1

nls

18

sp

T4

i

25

t

T5

aT2

T3

T1

nls

3

t

T5

aT2

T3

T1

T6

nl

e

s

T4

i

58

Copyright  1996 by Addison-Wesley Publishing Company 116

Character Weight Parent Child Type

0 a 10 9 1
1 e 15 11 1
2 i 12 10 0
3 s 3 7 0
4 t 4 8 1
5 sp 13 10 1
6 nl 1 7 1
7 T1 4 8 0
8 T2 8 9 0
9 T3 18 11 0

10 T4 25 12 1
11 T5 33 12 0
12 T6 58 0

Encoding table (numbers on left are array indices)

Copyright  1996 by Addison-Wesley Publishing Company 117

IdNode data members: Word is a String ; Lines is
a pointer to a Queue

Lines

Word Dynamically al

Copyright  1996 by Addison-Wesley Publishing Company 118

The object in the tree is a copy of the temporary; after the
insertion is complete, the destructor is called for the tempo-
rary

Dynamical

NewWord

Temporary

Object stored in the tree

Tree

143

que

Copyright  1996 by Addison-Wesley Publishing Company 119

Chapter 13

Simulation

Copyright  1996 by Addison-Wesley Publishing Company 120

1. At the start, the potato is at player 1; after one pass it is at
player 2.

2. Player 2 is eliminated, player 3 picks up the potato, and
after one pass it is at player 4.

3. Player 4 is eliminated, player 5 picks up the potato and
passes it to player 1.

4. Player 1 is eliminated, player 3 picks up the potato, and
passes it to player 5.

5. Player 5 is eliminated, so player 3 wins.

The Josephus problem

1 2 3

45

1 3

45

31

5

(a) (b) (c)

Copyright  1996 by Addison-Wesley Publishing Company 121

1 User 0 dials in at time 0 and connects for 1 minutes
2 User 0 hangs up at time 1
3 User 1 dials in at time 1 and connects for 5 minutes
4 User 2 dials in at time 2 and connects for 4 minutes
5 User 3 dials in at time 3 and connects for 11 minutes
6 User 4 dials in at time 4 but gets busy signal
7 User 5 dials in at time 5 but gets busy signal
8 User 6 dials in at time 6 but gets busy signal
9 User 1 hangs up at time 6

10 User 2 hangs up at time 6
11 User 7 dials in at time 7 and connects for 8 minutes
12 User 8 dials in at time 8 and connects for 6 minutes
13 User 9 dials in at time 9 but gets busy signal
14 User 10 dials in at time 10 but gets busy signal
15 User 11 dials in at time 11 but gets busy signal
16 User 12 dials in at time 12 but gets busy signal
17 User 13 dials in at time 13 but gets busy signal
18 User 3 hangs up at time 14
19 User 14 dials in at time 14 and connects for 6 minutes
20 User 8 hangs up at time 14
21 User 15 dials in at time 15 and connects for 3 minutes
22 User 7 hangs up at time 15
23 User 16 dials in at time 16 and connects for 5 minutes
24 User 17 dials in at time 17 but gets busy signal
25 User 15 hangs up at time 18
26 User 18 dials in at time 18 and connects for 7 minutes
27 User 19 dials in at time 19 but gets busy signal

Sample output for the modem bank simulation: 3 modems;
a dial in is attempted every minute; average connect time is
5 minutes; simulation is run for 19 minutes

Copyright  1996 by Addison-Wesley Publishing Company 122

1. The first DialIn request is inserted
2. After DialIn is removed, the request is connected result-

ing in a Hangup and a replacement DialIn request
3. A Hangup request is processed
4. A DialIn request is processed resulting in a connect. Thus

both a Hangup and DialIn event are added (three times)
5. A DialIn request fails; a replacement DialIn is gener-

ated (three times)
6. A Hangup request is processed (twice)
7. A DialIn request succeeds, Hangup and DialIn are

added.

Steps in the simulation

Copyright  1996 by Addison-Wesley Publishing Company 123

Priority queue for modem bank after each step

1 Hangup
User 0, Len 1 1 DialIn

User 1, Len 5

1 DialIn
User 1, Len 5

0 DialIn
User 0, Len 1

6 Hangup
User 1, Len 5 2 DialIn

User 2, Len 4

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 3 DialIn
User 3, Len 11

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 4

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 5

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 6

6 Hangup
User 2, Len 4 14 Hangup

User 3, Len 11 7 DialIn
User 7, Len 8

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 7

14 Hangup
User 3, Len 11 7 DialIn

User 7, Len 8

14 Hangup
User 3, Len 11 15 Hangup

User 7, Len 8 8 DialIn
User 8, Len 6

Copyright  1996 by Addison-Wesley Publishing Company 124

Chapter 14

Graphs and Paths

Copyright  1996 by Addison-Wesley Publishing Company 125

A directed graph

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10 31 4

5 8 4 6

Copyright  1996 by Addison-Wesley Publishing Company 126

Adjacency list representation of graph in Figure 14.1;
nodes in list i represent vertices adjacent to i and the cost
of the connecting edge

4 (10)

0 (4)

4 (2)

6 (6)

1 (2)

5 (1)

3 (3)

5 (5)

6 (4) 5 (8) 2 (2)

3 (1)0

1

2

3

4

5

6

Copyright  1996 by Addison-Wesley Publishing Company 127

• Dist : The length of the shortest path (either weighted or
unweighted, depending on the algorithm) from the starting
vertex to this vertex. This value is computed by the shortest
path algorithm.

• Prev : The previous vertex on the shortest path to this vertex.
• Name: The name corresponding to this vertex. This is estab-

lished when the vertex is placed into the dictionary and will
never change. None of the shortest path algorithms examine
this member. It is only used to print a final path.

• Adj : A pointer to a list of adjacent vertices. This is estab-
lished when the graph is read. None of the shortest path algo-
rithms will change the pointer or the linked list.

Information maintained by the Graph table

Copyright  1996 by Addison-Wesley Publishing Company 128

Data structures used in a shortest path calculation, with
input graph taken from a file: shortest weighted path from A
to C is: A to B to E to D to C (cost 76)

D C 10
A B 12
D B 23
A D 87
E D 43
B E 11
C A 19

Input

0

3

4

1

2

Dist Prev Name

D

C

A

B

E

Adj

3

0

Dictio

D (0)

B (
A (2)

A B

C D E

12

11

4310

19 2387

Visual representation of graph

66

76

0

12

23

4

0

-1

2

3
Graph table

Copyright  1996 by Addison-Wesley Publishing Company 129

Graph after marking the start node as reachable in zero
edges

V1V0

V2 V3 V4

V5 V6

0

Copyright  1996 by Addison-Wesley Publishing Company 130

Graph after finding all vertices whose path length from the
start is 1

V1V0

V2 V3 V4

V5 V6

1

0

1

Copyright  1996 by Addison-Wesley Publishing Company 131

Graph after finding all vertices whose shortest path from
the start is 2

V1V0

V2 V3 V4

V5 V6

1 2

0

1

2

Copyright  1996 by Addison-Wesley Publishing Company 132

Final shortest paths

V1V0

V2 V3 V4

V5 V6

1 2

0 3

1 3

2

Copyright  1996 by Addison-Wesley Publishing Company 133

How the graph is searched in unweighted shortest path
computation

V1V0

V2 V3 V4

V5 V6

0

V0

V2 V3

V5

0

1

1

V0

V2 V3

V5

0

1

2

1

V1V0

V2 V3 V4

V5 V6

0

1

2

1 2

V1V0

V2 V3 V4

V5 V6

0 3

1 3

2

1 2

V0

V2 V3

V5

0

1

2

1

V0

V2 V3

V5

0

1

2

1

V1V0

V2 V3 V4

V5 V6

0 3

1

2

1 2

Copyright  1996 by Addison-Wesley Publishing Company 134

Eyeball is at v; w is adjacent; Dw should be lowered to 6

wv

S

3 8

0

3

2

u

6

Copyright  1996 by Addison-Wesley Publishing Company 135

If Dv is minimal among all unseen vertices and all edge
costs are nonnegative, then it represents the shortest path

v

S
0

Du

u

Dv

d 0≥

Copyright  1996 by Addison-Wesley Publishing Company 136

Stages of Dijkstra’s algorithm

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V0

V2 V3

V5

2

2

1

14

5 8

1

0 0

V0

V2 V3

V5

2

2

1

14

5 8

3

9

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

9 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

6 5

1

0 2

V0

V2 V3

V5

2

2

1

14

5 8

3

6

1

0

V0

V2 V3

V5

2

2

1

14

5 8

3

8

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

9 5

1

0 2

Copyright  1996 by Addison-Wesley Publishing Company 137

Graph with negative cost cycle

V1V0

V2 V3 V4

V5 V6

2

2 2

1

 -10 31 4

5 8 4 6

Copyright  1996 by Addison-Wesley Publishing Company 138

Topological sort

V1V0

V2 V3 V4

V5 V6

0 2

3 2

3

V0

V2 V3

V5

0

2

2

1 0

V0

V2 V3

V5

0

2

0

0

V1V0

V2 V3 V4

V5 V6

0 2

2 2

1

0 0

V1V0

V2 V3 V4

V5 V6

0 0

0 0

0

0 0

V0

V2 V3

V5

0

0

0

0

V0

V2 V3

V5

0

1

0

0

V1V0

V2 V3 V4

V5 V6

0 0

1 1

0

0 0

1

Copyright  1996 by Addison-Wesley Publishing Company 139

Stages of acyclic graph algorithm

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V0

V2 V3

V5

2

2

1

14

5 8 4

1

0 0

V0

V2 V3

V5

2

2

1

14

5 8 4

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3

6 5

1

0 2

V0

V2 V3

V5

2

2

1

14

5 8 4
6

1

0

V0

V2 V3

V5

2

2

1

14

5 8 4
9

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3

9 5

1

0 2

Copyright  1996 by Addison-Wesley Publishing Company 140

Activity-node graph

C 3

B 2

A 3

G 2

K 4

H 1

F 3

E 1

D 2 FinishStart

Copyright  1996 by Addison-Wesley Publishing Company 141

Top: Event node grap; Bottom: Earliest completion time,
latest completion time, and slack (additional edge item)

1 6d

3

2

8d

7d

5

4

6

9

8

7

A 3

B 2

0

0

C 3

D 2

E 1 K 4

F 3

G 2

0

0

0

0

0

0

0

1 6d

3

2

8d

7d

5

4

6

9

8

7

A 3 0

B 2 2

0

0

C 3 0

D 2 1

E 1 2 K 4 2

F 3 0

G 2 2

0

0

0

0

0

0

0

3 6 6 9

0 3 5 5 7

2 3 7

3 6 6 9

0 4 6 7 9

4 5 9

Copyright  1996 by Addison-Wesley Publishing Company 142

Chapter 15

Stacks and Queues

Copyright  1996 by Addison-Wesley Publishing Company 143

How the stack routines work: empty stack, Push(A) ,
Push(B) , Pop

TOS (0)

TOS (1)

TOS (-1)

A A

B

Copyright  1996 by Addison-Wesley Publishing Company 144

Basic array implementation of the queue

Front

Front

Front

Front

Front

Back

Back

Back

Back

Back

A

A B

B

Size = 0

Size = 1

Size = 2

Size = 1

Size = 0

MakeEmpty

Enqueue(A)

Enqueue(B)

Dequeue()

Dequeue()

Copyright  1996 by Addison-Wesley Publishing Company 145

Array implementation of the queue with wraparound

Front

Front

Front

F

Front

Back

Back

B

Back

Back

F

F

Size = 3

Size = 4

Size = 3

Size = 2

Size = 1

After 3 Enqueues

Enqueue(F)

Dequeue()

Dequeue()

Dequeue()

F

F

D

C D

C D

Copyright  1996 by Addison-Wesley Publishing Company 146

Linked list implementation of the stack

ABCD

TopOfStack

Copyright  1996 by Addison-Wesley Publishing Company 147

Linked list implementation of the queue

A B C D

Front Back

Copyright  1996 by Addison-Wesley Publishing Company 148

Enqueue operation for linked-list-based implementation

Back

X

Back

...

...

Before

After

Copyright  1996 by Addison-Wesley Publishing Company 149

Chapter 16

Linked Lists

Copyright  1996 by Addison-Wesley Publishing Company 150

Basic linked list

A B C D

FrontOfList

Copyright  1996 by Addison-Wesley Publishing Company 151

Insertion into a linked list: create new node (Tmp), copy in
X, set Tmp’s next pointer, set Current ’s next pointer

Current

... .

X

A B

Tmp

Copyright  1996 by Addison-Wesley Publishing Company 152

Deletion from a linked list

Current

...
XA B

Copyright  1996 by Addison-Wesley Publishing Company 153

Using a header node for the linked list

A B C

Header

Copyright  1996 by Addison-Wesley Publishing Company 154

Empty list when header node is used

Header

Copyright  1996 by Addison-Wesley Publishing Company 155

Doubly linked list

Head Tail

A B

Copyright  1996 by Addison-Wesley Publishing Company 156

Empty doubly linked list

Head Tail

Copyright  1996 by Addison-Wesley Publishing Company 157

Insertion into a doubly linked list by getting new node and
then changing pointers in order indicated

... A B

X
a b
c d

Copyright  1996 by Addison-Wesley Publishing Company 158

Circular doubly linked list

First

A B C

Copyright  1996 by Addison-Wesley Publishing Company 159

Chapter 17

Trees

Copyright  1996 by Addison-Wesley Publishing Company 160

A tree

A

B C D E

F G H I J

K

Copyright  1996 by Addison-Wesley Publishing Company 161

Tree viewed recursively

...

Root

T1 T2 T3 Tk

Copyright  1996 by Addison-Wesley Publishing Company 162

First child/next sibling representation of tree in Figure 17.1

A

B C D E

F G H I J

K

Copyright  1996 by Addison-Wesley Publishing Company 163

UNIX directory

mark*

books* courses*

ecp*dsaa* ipps*

ch1 ch2 ch1 ch2 ch2ch1

cop3223* cop353

syl syl

.

Copyright  1996 by Addison-Wesley Publishing Company 164

mark
 books
 dsaa
 ch1
 ch2
 ecp
 ch1
 ch2
 ipps
 ch1
 ch2
 courses
 cop3223
 syl
 cop3530
 syl
 .login

The directory listing for tree in Figure 17.4

Copyright  1996 by Addison-Wesley Publishing Company 165

UNIX directory with file sizes

mark*(1)

books*(1) courses*(1)

ecp*(1)dsaa*(1) ipps*(1)

ch1(9) ch2(7) ch1(4) ch2(6) ch2(8)ch1(3)

cop3223*(1) cop353

syl(2) syl(

.

Copyright  1996 by Addison-Wesley Publishing Company 166

 ch1 9
 ch2 7
 dsaa 17
 ch1 4
 ch2 6
 ecp 11
 ch1 3
 ch2 8
 ipps 12
 books 41
 syl 2
 cop3223 3
 syl 3
 cop3530 4
 courses 8
 .login 2
mark 52

Trace of the Size function

Copyright  1996 by Addison-Wesley Publishing Company 167

Uses of binary trees: left is an expression tree and right is a
Huffman coding tree

+

a *

- d

a

d

b cb c

Copyright  1996 by Addison-Wesley Publishing Company 168

Result of a naive Merge operation

T1.Root

Root
X

Copyright  1996 by Addison-Wesley Publishing Company 169

Aliasing problems in the Merge operation; T1 is also the
current object

T2.Root

Root
X

OldRoot
OldT1.Root

T1.Root

Copyright  1996 by Addison-Wesley Publishing Company 170

Recursive view used to calculate the size of a tree: ST = SL
+ SR + 1

SL SR

Copyright  1996 by Addison-Wesley Publishing Company 171

Recursive view of node height calculation: HT = Max(
HL+1, HR +1)

HL

HL+1

HR

HR +1

Copyright  1996 by Addison-Wesley Publishing Company 172

Preorder, postorder, and inorder visitation routes

1

2 3

4 6

75

7

1 6

3 5

42

1

Copyright  1996 by Addison-Wesley Publishing Company 173

Stack states during postorder traversal

a 0
b 0
a 1

b 1
a 1

d 0
b 2
a 1

d 1
b 2
a 1

d 2
b 2
a 1

b 2
a 1

d

a

b

c 0
a 2

e 0
c 1
a 2

e 1
c 1
a 2

e 2
c 1
a 2

c 1
a 2

e

c 2
a 2 a 2

c a

a

b c

ed

Copyright  1996 by Addison-Wesley Publishing Company 174

Chapter 18

Binary Search Trees

Copyright  1996 by Addison-Wesley Publishing Company 175

Two binary trees (only the left tree is a search tree)

2 9

1 5

3

2

1 5

3 8

7 7

Copyright  1996 by Addison-Wesley Publishing Company 176

Binary search trees before and after inserting 6

2 9

1 5

3

7

2

1 5

3 6

7

Copyright  1996 by Addison-Wesley Publishing Company 177

Deletion of node 5 with one child, before and after

7

2 9

1 5

3

7

2

1

3

Copyright  1996 by Addison-Wesley Publishing Company 178

Deletion of node 2 with two children, before and after

7

2 9

1 5

3

7

3

1

4

5

4

Copyright  1996 by Addison-Wesley Publishing Company 179

Using the Size data member to implement FindKth

X X X

SL SL SLSRSR

K < SL + 1 K == SL + 1 K > S

Copyright  1996 by Addison-Wesley Publishing Company 180

Balanced tree on the left has a depth of log N; unbalanced
tree on the right has a depth of N–1

Copyright  1996 by Addison-Wesley Publishing Company 181

Binary search trees that can result from inserting a permu-
tation 1, 2, and 3; the balanced tree in the middle is twice
as likely as any other

3

2

21

32

3

1

3

2

11

Copyright  1996 by Addison-Wesley Publishing Company 182

Two binary search trees: the left tree is an AVL tree, but
the right tree is not (unbalanced nodes are darkened)

12

8 16

4 10 14

2 6

12

8

4 10

2 6

1

Copyright  1996 by Addison-Wesley Publishing Company 183

Minimum tree of height H

H–1

H

H–2
SH–1 SH–2

Copyright  1996 by Addison-Wesley Publishing Company 184

Single rotation to fix case 1

k2

k1

k1

A

B

C

A

Copyright  1996 by Addison-Wesley Publishing Company 185

Single rotation fixes AVL tree after insertion of 1

8 16

4 10 14

2 6

4

2 8

1 6 10

k2

k1

A B

C

1

A

B C

k2

k1

1212

Copyright  1996 by Addison-Wesley Publishing Company 186

Symmetric single rotation to fix case 4

k2

k1

k1

A B C

A

Copyright  1996 by Addison-Wesley Publishing Company 187

Single rotation does not fix case 2

k2

k1

P

Q

R P

k1

Copyright  1996 by Addison-Wesley Publishing Company 188

Left-right double rotation to fix case 2

k3

k1

k2

k1

A
B C

D

A
B

k2

Copyright  1996 by Addison-Wesley Publishing Company 189

Double rotation fixes AVL tree after insertion of 5

8 16

4 10 14

2 6

6

4 8

2 105

k3

k1

A

D

5

A C D

k3

k2

C

k2 B

k1

12

B

12

Copyright  1996 by Addison-Wesley Publishing Company 190

Left-right double rotation to fix case 3

k1

k3

k2

A

B C
D A

B

k1

k2

Copyright  1996 by Addison-Wesley Publishing Company 191

A red black tree is a binary search tree with the following order-
ing properties:

1. Every node is colored either red or black.
2. The root is black.
3. If a node is red, its children must be black.
4. Every path from a node to a NULL pointer must contain the

same number of black nodes.

Red black tree properties

Copyright  1996 by Addison-Wesley Publishing Company 192

Example of a red black tree; insertion sequence is 10, 85,
15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55)

15

10 20

70

60 85

65 80 90

40 55

30

5 50

Copyright  1996 by Addison-Wesley Publishing Company 193

If S is black, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 if X is an outside grandchild

B

C D E

A

A B

SP

X

G

X

P

Copyright  1996 by Addison-Wesley Publishing Company 194

If S is black, then a double rotation involving X, the parent,
and the grandparent, with appropriate color changes,
restores property 3 if X is an inside grandchild

P S

XA D E A B C

B C

G X

P

Copyright  1996 by Addison-Wesley Publishing Company 195

If S is red, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 between X and P

P S

X

B

C D E

A

A B

G

X

P

Copyright  1996 by Addison-Wesley Publishing Company 196

Color flip; only if X’s parent is red do we continue with a
rotation

C1 C2

X

C1 C2

X

Copyright  1996 by Addison-Wesley Publishing Company 197

Color flip at 50 induces a violation; because it is outside, a
single rotation fixes it

15

10 20

70

60 85

65 80 90

40 55

30

5 50

Copyright  1996 by Addison-Wesley Publishing Company 198

Result of single rotation that fixes violation at node 50

15

10 20

60

50 70

55 65 85

80

30

5 40

Copyright  1996 by Addison-Wesley Publishing Company 199

Insertion of 45 as a red node

15

10 20

60

50 70

55 65 85

8045

30

5 40

Copyright  1996 by Addison-Wesley Publishing Company 200

Deletion: X has two black children, and both of its sibling’s
children are black; do a color flip

X T X

P P

Copyright  1996 by Addison-Wesley Publishing Company 201

Deletion: X has two black children, and the outer child of its
sibling is red; do a single rotation

P T

X T P

R X

Copyright  1996 by Addison-Wesley Publishing Company 202

Deletion: X has two black children, and the inner child of its
sibling is red; do a double rotation

P R

X T P

R X

Copyright  1996 by Addison-Wesley Publishing Company 203

X is black and at least one child is red; if we fall through to
next level and land on a red child, everything is good; if not,
we rotate a sibling and parent

B C B C B

TX P

TX' P

X'

Copyright  1996 by Addison-Wesley Publishing Company 204

The level of a node is

• One if the node is a leaf
• The level of its parent, if the node is red
• One less than the level of its parent, if the node is black

1. Horizontal links are right pointers (because only right chil-
dren may be red).

2. There may not be two consecutive horizontal links (because
there cannot be consecutive red nodes).

3. Nodes at level 2 or higher must have two children.
4. If a node does not have a right horizontal link, then its two

children are at the same level.

AA-tree properties

Copyright  1996 by Addison-Wesley Publishing Company 205

AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60,
30, 50, 65, 80, 90, 40, 5, 55, 35

5 10

15

20 35 40 55 65 80

30 70

6050

Copyright  1996 by Addison-Wesley Publishing Company 206

Skew is a simple rotation between X and P

A B C

P X

A B C

P X

Copyright  1996 by Addison-Wesley Publishing Company 207

Split is a simple rotation between X and R; note that R’s
level increases

A B

X R

A B

XG G

R

Copyright  1996 by Addison-Wesley Publishing Company 208

After inserting 45 into sample tree; consecutive horizontal
links are introduced starting at 35

After Split at 35; introduces a left horizontal link at 50

After Skew at 50; introduces consecutive horizontal nodes
starting at 40

5 10 20 35 40 55 65 8045

30 70

50 6015

5 10 20 35 55 65 80

50

45

604015

30 70

5 10 20 35 55 65 80

50

30

45

70

6015 40

Copyright  1996 by Addison-Wesley Publishing Company 209

After Split at 40; 50 is now on the same level as 70,
thus inducing an illegal left horizontal link

After Skew at 70; this introduces consecutive horizontal
links at 30

After Split at 30; insertion is complete

5 10 20 35 55 65 8045

50

15 40 60

30 70

5 10 20 35 55 65 8045

15 40 60

30 50 70

5 10 20 35 55 65 8045

15 40 60

30 70

50

Copyright  1996 by Addison-Wesley Publishing Company 210

When 1 is deleted, all nodes become level 1, introducing
horizontal left links

3 4 6 71

2 5

Copyright  1996 by Addison-Wesley Publishing Company 211

Five-ary tree of 31 nodes has only three levels

Copyright  1996 by Addison-Wesley Publishing Company 212

B-tree of order 5

41 66 87

9272 78 8348 51 548 18 26 35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

31

32

35

36

37

38

39

41

42

44

46

48

49

50

51

52

53

54

56

58

83

84

85

78

79

81

72

73

74

76

66

68

69

70

9

9

9

87

89

90

59

Copyright  1996 by Addison-Wesley Publishing Company 213

A B-tree of order M is an M-ary tree with the following proper-
ties:

1. The data items are stored at leaves.
2. The nonleaf nodes store up to keys to guide the

searching; key i represents the smallest key in subtree .
3. The root is either a leaf or has between 2 and M children.
4. All nonleaf nodes (except the root) have between

and M children.
5. All leaves are at the same depth and have between

and L children, for some L.

B-tree properties

M 1–
i 1+

M 2⁄

L 2⁄

Copyright  1996 by Addison-Wesley Publishing Company 214

B-tree after insertion of 57 into tree in Figure 18.70

41 66 87

9272 78 8348 51 548 18 26 35

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

31

32

35

36

37

38

39

41

42

44

46

48

49

50

51

52

53

54

56

57

83

84

85

78

79

81

72

73

74

76

66

68

69

70

9

9

9

87

89

90

58

59

Copyright  1996 by Addison-Wesley Publishing Company 215

Insertion of 55 in B-tree in Figure 18.71 causes a split into
two leaves

41 66 87

972 78 8348 51 54 578 18 26 35

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37
38
39

41
42
44
46

48
49
50

51
52
53

54
55
56

83
84
85

78
79
81

72
73
74
76

66
68
69
70

87
89
90

57
58
59

Copyright  1996 by Addison-Wesley Publishing Company 216

Insertion of 40 in B-tree in Figure 18.72 causes a split into
two leaves and then a split of the parent node

26 41 66 87

72 78 8348 51 54 5735 38

26
28
30
31
32

35
36
37

38
39
40

41
42
44
46

48
49
50

51
52
53

54
55
56

83
84
85

78
79
81

72
73
74
76

66
68
69
70

57
58
59

8 18

2
4
6

8
10
12
14
16

18
20
22
24

Copyright  1996 by Addison-Wesley Publishing Company 217

B-tree after deletion of 99 from Figure 18.73

26 41 66 83

72 7848 51 54 5735 38

26

28

30

31

32

35

36

37

38

39

40

41

42

44

46

48

49

50

51

52

53

54

55

56

78

79

81

72

73

74

76

66

68

69

70

57

58

59

8 18

2

4

6

8

10

12

14

16

18

20

22

24

Copyright  1996 by Addison-Wesley Publishing Company 218

Chapter 19

Hash Tables

Copyright  1996 by Addison-Wesley Publishing Company 219

Linear probing hash table after each insertion

0

1

2

3

4

5

6

7

8

9

Hash(89, 10) = 8
Hash(18, 10) = 8
Hash(49, 10) = 9
Hash(58, 10) = 8
Hash(9, 10) = 9

After Insert 89 After Insert 18 After Insert 49 After Insert 58A

89 89 89 89

18 18 18

49 49

58

Copyright  1996 by Addison-Wesley Publishing Company 220

Quadratic probing hash table after each insertion (note that
the table size is poorly chosen because it is not a prime
number)

0

1

2

3

4

5

6

7

8

9

Hash(89, 10) = 8
Hash(18, 10) = 8
Hash(49, 10) = 9
Hash(58, 10) = 8
Hash(9, 10) = 9

After Insert 89 After Insert 18 After Insert 49 After Insert 58

89 89 89 89

18 18 18

49 49

58

Copyright  1996 by Addison-Wesley Publishing Company 221

Chapter 20

A Priority Queue: The Binary Heap

Copyright  1996 by Addison-Wesley Publishing Company 222

A complete binary tree and its array representation

A

B C

D E F G

H I J

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B C D E F G H I J

1

2 3

5

9 108

4 6 7

Copyright  1996 by Addison-Wesley Publishing Company 223

Heap order property

X

P

P X≤

Copyright  1996 by Addison-Wesley Publishing Company 224

Two complete trees (only the left tree is a heap)

13

21 16

24 31 19 68

65 26 32

13

21

6 31

65 26 32

Copyright  1996 by Addison-Wesley Publishing Company 225

Attempt to insert 14, creating the hole and bubbling the
hole up

13

21 16

24 31 19 68

65 26 32

13

21

24

65 26 32 31

14

Copyright  1996 by Addison-Wesley Publishing Company 226

The remaining two steps to insert 14 in previous heap

13

16

24 21 19 68

65 26 32

1

14

24 21

65 26 32 31

1414

31

Copyright  1996 by Addison-Wesley Publishing Company 227

Creation of the hole at the root

13

14 16

19 21 19 68

65 26 32

14

19 21

65 26 32 31

Min=13

31

Copyright  1996 by Addison-Wesley Publishing Company 228

Next two steps in DeleteMin

14

16

19 21 19 68

65 26 32

1

19

21

65 26 32 3131

Copyright  1996 by Addison-Wesley Publishing Company 229

Last two steps in DeleteMin

14

19 16

26 21 19 68

65 32

1

19

21

65 31 32

26

31

Copyright  1996 by Addison-Wesley Publishing Company 230

Recursive view of the heap

R

Copyright  1996 by Addison-Wesley Publishing Company 231

Initial heap (left); after PercolateDown(7) (right)

After PercolateDown(6) (left); after
PercolateDown(5) (right)

92

47 21

20 12 45 63

61 55 83 736437 2517

92

47

20 12

61 55 37 2517

61 55 83 736437 4517 61 55 37 4517

20 12 25 63 20 12

47 21 47

92 92

Copyright  1996 by Addison-Wesley Publishing Company 232

After PercolateDown(4) (left); after
PercolateDown(3) (right)

After PercolateDown(2) (left); after
PercolateDown(1) and FixHeap terminates
(right)

61 55 83 736437 4520 61 55 37 4517

17 12 25 63 20 12 2

47 21 47

92 92

61 55 83 736447 4520 61 55 4592 47

17 37 25 63 20 37 2

12 21 17

92 12

Copyright  1996 by Addison-Wesley Publishing Company 233

Marking of left edges for height one nodes

Marking of first left and subsequent right edge for height
two nodes

Copyright  1996 by Addison-Wesley Publishing Company 234

Marking of first left and subsequent two right edges for
height three nodes

Marking of first left and subsequent right edges for height 4
node

Copyright  1996 by Addison-Wesley Publishing Company 235

(Max) Heap after FixHeap phase

0 1 2 3 4 5 6 7 8 9 10 11 12 13

53 59 26 41 58 31 16 21 3697

16 21 36

26 41 58 31

53 59

97

Copyright  1996 by Addison-Wesley Publishing Company 236

1. Toss each item into a binary heap.
2. Apply FixHeap .
3. Call DeleteMin N times; the items will exit the heap in

sorted order.

Heapsort algorithm

Copyright  1996 by Addison-Wesley Publishing Company 237

Heap after first DeleteMax

Heap after second DeleteMax

0 1 2 3 4 5 6 7 8 9 10 11 12 13

53 58 26 41 36 31 16 21 9759

16 21 97

26 41 36 31

53 58

59

0 1 2 3 4 5 6 7 8 9 10 11 12 13

53 36 26 41 21 31 16 59 9758

16 59 97

26 41 21 31

53 36

58

Copyright  1996 by Addison-Wesley Publishing Company 238

A1 81 94 11 96 12 35 17 99 28 58 41 75 15

A2

B1

B2

Initial tape configuration

Copyright  1996 by Addison-Wesley Publishing Company 239

A1

A2

B1 11 81 94 17 28 99 15

B2 12 35 96 41 58 75

Distribution of length 3 runs onto two tapes

A1 11 12 35 81 94 96 15

A2 17 28 41 58 75 99

B1

B2

Tapes after first round of merging (run length = 6)

A1

A2

B1 11 12 17 28 35 41 58 75 81 94 96 99

B2 15

Tapes after second round of merging (run length = 12)

A1 11 12 15 17 28 35 41 58 75 81 94 96 99

A2

B1

B2

Tapes after third round of merging

Copyright  1996 by Addison-Wesley Publishing Company 240

A1

A2

A3

B1 11 81 94 41 58 75

B2 12 35 96 15

B3 17 28 99

Initial distribution of length 3 runs onto three tapes

A1 11 12 17 28 35 81 94 96 99

A2 15 41 58 75

A3

B1

B2

B3

After one round of three-way merging (run length = 9)

A1

A2

A3

B1 11 12 15 17 28 35 41 58 75 81 94 96 99

B2

B3

After two rounds of three-way merging

Copyright  1996 by Addison-Wesley Publishing Company 241

Run After

Const. T3+T2 T1+T2 T1+T3 T2+T3 T1+T2 T1+T3 T2+T3

T1
T2
T3

0
21
13

13
8
0

5
0
8

0
5
3

3
2
0

1
0
2

0
1
1

1
0
0

Number of runs using polyphase merge

Copyright  1996 by Addison-Wesley Publishing Company 242

3 Elements in Heap Array
Output

Next Item

Array[1] Array[2] Array[3] Read

Run1
11 94 81 11 96

81 94 96 81 12

Run 1 94 96 12 94 35

96 35 12 96 17

17 35 12 End of Run Rebuild Heap

Run 2

12 35 17 12 99

17 35 99 17 28

28 99 35 28 58

35 99 58 35 41

41 99 58 41 75

58 99 75 58 End of Tape

99 75 99

75 End of Run Rebuild Heap

Run 3 75 75

Example of run construction

Copyright  1996 by Addison-Wesley Publishing Company 243

Chapter 21

Splay Trees

Copyright  1996 by Addison-Wesley Publishing Company 244

Rotate-to-root strategy applied when node 3 is accessed

4

2 5

1 3

4

3 5

2

1

3

2 4

1 5

Copyright  1996 by Addison-Wesley Publishing Company 245

Insertion of 4 using rotate-to-root

3

2 4

1

4

3

2

1

3

2

1

Copyright  1996 by Addison-Wesley Publishing Company 246

Sequential access of items takes quadratic time

4

3

2

1

3

2 4

1

1

4

3

2

2

4

3

1

Copyright  1996 by Addison-Wesley Publishing Company 247

Zig case (normal single rotation)

Zig-zag case (same as a double rotation); symmetric case
omitted

Zig-zig case (this is unique to the splay tree); symmetric
case omitted

A BB

C A

X

X

P

A A B C

B C

D

G

P

X

P

X

B

C

A

D A

G

P

X

X

Copyright  1996 by Addison-Wesley Publishing Company 248

Result of splaying at node 1 (three zig-zigs and a zig)

1

2

22

3

3 51

5 5

4 4 4

3

7

6

1

7 1

6

7

6

Copyright  1996 by Addison-Wesley Publishing Company 249

The Remove operation applied to node 6: First 6 is
splayed to the root, leaving two subtrees; a FindMax on
the left subtree is performed, raising 5 to the root of the left
subtree; then the right subtree can be attached (not shown)

2 6

1 5 7

1 1

5 2 5

4 4 7

64

2

7

Copyright  1996 by Addison-Wesley Publishing Company 250

Top-down splay rotations: zig (top), zig-zig (middle), and
zig-zag (bottom)

X

L R

A B

X

Y
L

A

Y

L R L
B

Z

A

C

L R L
A

Z

A B

Y

Z

X

C

A B

Y

Z
Y

Copyright  1996 by Addison-Wesley Publishing Company 251

Simplified top-down zig-zag

L R L

A

X

C

A B

Y

Z

Y

Copyright  1996 by Addison-Wesley Publishing Company 252

Final arrangement for top-down splaying

L R

A B

X

L

A

X

Copyright  1996 by Addison-Wesley Publishing Company 253

Steps in top-down splay (accessing 19 in top tree)

3024

25

20

18

16

15

13

12

5

15

13

12

5

24

20

24

20

16

18

12

5 18

16

15

13

12

5

18

16

15

13

20

24

25

30

Emp

18

16

15

13

20

24

25

30

EmpEmpty

Simplified zig-zag

Zig-zig

Zig

Reassemble

12

5

Copyright  1996 by Addison-Wesley Publishing Company 254

Chapter 22

Merging Priority Queues

Copyright  1996 by Addison-Wesley Publishing Company 255

Simplistic merging of heap-ordered trees; right paths are
merged

8 9 7

5

6

33

5

9

6

Copyright  1996 by Addison-Wesley Publishing Company 256

Merging of skew heap; right paths are merged, and the
result is made a left path

8

5

9 5

4

3

2

4

9

8

76

7

Copyright  1996 by Addison-Wesley Publishing Company 257

A recursive viewpoint is as follows: Let S be the tree with the
smaller root, and let R be the other tree.

1. If one tree is empty, the other can be used as the merged
result.

2. Otherwise, let Temp be the right subtree of L.
3. Make L’s left subtree its new right subtree.
4. Make the result of the recursive merge of Temp and R the

new left subtree of L.

Skew heap algorithm (recursive viewpoint)

Copyright  1996 by Addison-Wesley Publishing Company 258

Change in heavy/light status after a merge

8

5

9 5

4

3

2

4

9

8

76

7

L

L H

L L

L

L

Copyright  1996 by Addison-Wesley Publishing Company 259

Abstract representation of sample pairing heap

Actual representation of above pairing heap; dark line rep-
resents a pair of pointers that connect nodes in both direc-
tions

151181310 17

95436

2

1214

1816

151181310 17

95436

2

1214

1816

Copyright  1996 by Addison-Wesley Publishing Company 260

Recombination of siblings after a DeleteMin ; in each
merge the larger root tree is made the left child of the
smaller root tree: (a) the resulting trees; (b) after the first
pass; (c) after the first merge of the second pass; (d) after
the second merge of the second pass

151181310 17

95436

1214

1816

1511

81310 95

43

6

1214

1816

1511

81310

19

17

7

9

5

43

6

1214 1816

1511

8

1310

19

17

7

9

5

4

3

6

1214 1816

Copyright  1996 by Addison-Wesley Publishing Company 261

CompareAndLink merges two trees

A B

C

SF A

F

B

B

S

A

F S>

F S≤

Copyright  1996 by Addison-Wesley Publishing Company 262

Chapter 23

The Disjoint Set Class

Copyright  1996 by Addison-Wesley Publishing Company 263

A relation R is defined on a set S if for every pair of elements
, , a R b is either true or false. If a R b is true, then

we say that a is related to b. An equivalence relation is a relation R
that satisfies three properties:

• Reflexive: a R a is true for all

• Symmetric: a R b if and only if b R a
• Transitive: a R b and b R c implies that a R c

Definition of equivalence relation

a b,() a b, S∈

a S∈

Copyright  1996 by Addison-Wesley Publishing Company 264

A graph G (left) and its minimum spanning tree

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V0

V2 V3

V5

2

2

1

1

4

Copyright  1996 by Addison-Wesley Publishing Company 265

Kruskal’s algorithm after each edge is considered

V1V0

V2 V3 V4

V5 V6

1

V0

V2 V3

V5 1

1

V0

V2 V3

V5

2

2

1

1

V1V0

V2 V3 V4

V5 V6

2

1

1

V1V0

V2 V3 V4

V5 V6

2

2 2

1

14

V0

V2 V3

V5

2

2

1

1

4

V0

V2 V3

V5

2

2

1

1

V1V0

V2 V3 V4

V5 V6

2

2 2

1

1

Copyright  1996 by Addison-Wesley Publishing Company 266

The nearest common ancestor for each request in the pair
sequence (x,y), (u,z), (w,x), (z,w), (w,y), is A, C, A, B, and
y, respectively

A

C

B

Du

z

w

yx

Copyright  1996 by Addison-Wesley Publishing Company 267

The sets immediately prior to the return from the recursive
call to D; D is marked as visited and NCA(D, v) is v ’s
anchor to the current path

A

C

B

q

p

rD

Copyright  1996 by Addison-Wesley Publishing Company 268

After the recursive call from D returns, we merge the set
anchored by D into the set anchored by C and then com-
pute all NCA(C, v) for nodes v that are marked prior to
completing C’s recursive call

A

C

B

Copyright  1996 by Addison-Wesley Publishing Company 269

Forest and its eight elements, initially in different sets

Forest after Union of trees with roots 4 and 5

1 75 64320

1 7

5

64320

Copyright  1996 by Addison-Wesley Publishing Company 270

Forest after Union of trees with roots 6 and 7

Forest after Union of trees with roots 4 and 6

1

75

64320

1

7

5 6

4320

Copyright  1996 by Addison-Wesley Publishing Company 271

Forest formed by union-by-size, with size encoded as a
negative number

1

7

5 6

4

3

20

Copyright  1996 by Addison-Wesley Publishing Company 272

Worst-case tree for N=16

3

1 2

0

7

5 6

4

11

9 10

8

12

Copyright  1996 by Addison-Wesley Publishing Company 273

Forest formed by union-by-height, with height encoded as
a negative number

1

7

5 6

4

3

20

Copyright  1996 by Addison-Wesley Publishing Company 274

Path compression resulting from a Find (14) on the tree in
Figure 23.12

7

5 6

4

11

9 10

8

13

12

3

1 2

0

Copyright  1996 by Addison-Wesley Publishing Company 275

Ackerman’s function is defined as:

From this, we define the inverse Ackerman’s function as

Ackerman’s function and its inverse

A 1 j,() 2j=

A i 1,() A i 1– 2,()=

A i j,() A i 1– A i j, 1–(),()=

j 1≥
i 2≥

i j, 2≥

α M N,() min i 1≥ A i M N⁄,() Nlog>(){ }=

Copyright  1996 by Addison-Wesley Publishing Company 276

To incorporate path compression into the proof, we use the fol-
lowing fancy accounting: For each node v on the path from the
accessed node i to the root, we deposit one penny under one of two
accounts:

1. If v is the root, or if the parent of v is the root, or if the par-
ent of v is in a different rank group from v, then charge one
unit under this rule. This deposits an American penny into
the kitty.

2. Otherwise, deposit a Canadian penny into the node.

Accounting used in union-find proof

Copyright  1996 by Addison-Wesley Publishing Company 277

Group Rank

0 0

1 1

2 2

3 3,4

4 5 through 16

5 17 through 65536

6 65537 through 265536

7 Truly huge ranks

Actual partitioning of ranks into groups used in the union-
find proof

List of Transparencies

Chapter 1 Pointers, Arrays, and Structures 1

Pointer illustration 2
Result of *Ptr=10 3
Uninitialized pointer 4
(a) Initial state; (b) Ptr1=Ptr2 starting from initial state; (c) *Ptr1=*Ptr2 starting from

initial state 5
Memory model for arrays (assumes 4 byte int); declaration is int A[3]; int i; 6
Some of the string routines in <string.h> 7
Two ways to allocate arrays; one leaks memory 8
Memory reclamation 9
Array expansion: (a) starting point: A2 points at 10 integers; (b) after step 1: Original

points at the 10 integers; (c) after steps 2 and 3: A2 points at 12 integers, the first 10
of which are copied from Original ; (d) after step 4: the 10 integers are freed 10

Pointer arithmetic: X=&A[3]; Y=X+4 11
First eight lines from prof for program 12
First eight lines from prof with highest optimization 12
Student structure 13
Illustration of a shallow copy in which only pointers are copied 14
Illustration of a simple linked list 15

Chapter 2 Objects and Classes 16

A complete declaration of a MemoryCell class 17
MemoryCell members: Read and Write are accessible, but StoredValue is hidden

18
A simple test routine to show how MemoryCell objects are accessed 19
A more typical MemoryCell declaration in which interface and implementation are sepa-

rated 20
Interface for BitArray class 21

Copyright 1996 by Addison-Wesley Publishing Company ii

BitArray members 22
Construction examples 23

Chapter 3 Templates 24

Basic action of insertion sort (shaded part is sorted) 25
Closer look at action of insertion sort (dark shading indicates sorted area; light shading is where

new element was placed) 26
Typical layout for template interface and member functions 27

Chapter 4 Inheritance 28

General layout of public inheritance 29
Access rules that depend on what M ’s visibility is in the base class 30
Friendship is not inherited 31
Vector and BoundedVector classes with calls to operator[] that are done automatically

and correctly 32
Vector and BoundedVector classes 33
The hierarchy of shapes used in an inheritance example 34
Summary of nonvirtual, virtual, and pure virtual functions 35
Programmer responsibilities for derived class 36

Chapter 5 Algorithm Analysis 37

Running times for small inputs 38
Running time for moderate inputs 39
Functions in order of increasing growth rate 40
The subsequences used in Theorem 5.2 41
The subsequences used in Theorem 5.3. The sequence from p to q has sum at most that of the sub-

sequence from i to q. On the left, the sequence from i to q is itself not the maximum (by
Theorem 5.2). On the right, the sequence from i to q has already been seen. 42

Meanings of the various growth functions 44
Observed running times (in seconds) for various maximum contiguous subsequence sum algo-

rithms 45
Empirical running time for N binary searches in an N-item array 46

Chapter 6 Data Structures 47

Sample stack program; output is
Contents: 4 3 2 1 0 48

Stack model: input to a stack is by Push , output is by Top, deletion is by Pop 49
Sample queue program; output is

Contents:0 1 2 3 4 50
Queue model: input is by Enqueue , output is by Front , deletion is by Dequeue 51
Sample list program; output is Contents: 4 3 2 1 0 end 52
Link list model: inputs are arbitrary and ordered, any item may be output, and iteration is support-

Copyright 1996 by Addison-Wesley Publishing Company iii

ed, but this data structure is not time-efficient 53
A simple linked list 54
A tree 55
Expression tree for (a+b)*(c-d) 56
Sample search tree program;

output is Found Becky; Mark not found; 57
Binary search tree model; the binary search is extended to allow insertions and deletions 58
Sample hash table program;

output is Found Becky; Mark not found; 59
The hash table model: any named item can be accessed or deleted in essentially constant time 60
Sample program for priority queues;

output is Contents: 0 1 2 3 4 61
Priority queue model: only the minimum element is accessible 62
Summary of some data structures 63

Chapter 7 Recursion 64

Stack of activation records 65
Trace of the recursive calculation of the Fibonacci numbers 66
Divide-and-conquer algorithms 67
Dividing the maximum contiguous subsequence problem into halves 68
Trace of recursive calls for recursive maximum contiguous subsequence sum algorithm 69
Basic divide-and-conquer running time theorem 70
General divide-and-conquer running time theorem 71
Some of the subproblems that are solved recursively in Figure 7.15 72
Alternative recursive algorithm for coin-changing problem 73

Chapter 8 Sorting Algorithms 74

Examples of sorting 75
Deriving the relational and equality operators from operator< 76
Shellsort after each pass, if increment sequence is {1, 3, 5} 77
Running time (milliseconds) of the insertion sort and Shellsort with various increment sequences

78
Linear-time merging of sorted arrays (first four steps) 79
Linear-time merging of sorted arrays (last four steps) 80
Basic quicksort algorithm 81
The steps of quicksort 82
Correctness of quicksort 83
Partitioning algorithm: pivot element 6 is placed at the end 84
Partitioning algorithm: i stops at large element 8; j stops at small element 2 84
Partitioning algorithm: out-of-order elements 8 and 2 are swapped 84
Partitioning algorithm: i stops at large element 9; j stops at small element 5 84
Partitioning algorithm: out-of-order elements 9 and 5 are swapped 84
Partitioning algorithm: i stops at large element 9; j stops at small element 3 84
Partitioning algorithm: swap pivot and element in position i 84

Copyright 1996 by Addison-Wesley Publishing Company iv

Original array 85
Result of sorting three elements (first, middle, and last) 85
Result of swapping the pivot with next to last element 85
Median-of-three partitioning optimizations 86
Quickselect algorithm 87
Using an array of pointers to sort 88
Data structure used for in-place rearrangement 89

Chapter 9 Randomization 90

Distribution of lottery winners if expected number of winners is 2 91
Poisson distribution 92

Chapter 10 Fun and Games 93

Sample word search grid 94
Brute-force algorithm for word search puzzle 95
Alternate algorithm for word search puzzle 96
Improved algorithm for word search puzzle; incorporates a prefix test 97
Basic minimax algorithm 98
Alpha-beta pruning: After H2A is evaluated, C2, which is the minimum of the H2’s, is at best a

draw. Consequently, it cannot be an improvement over C1. We therefore do not need to
evaluate H2B, H2C, and H2D, and can proceed directly to C3 99

Two searches that arrive at identical positions 100

Chapter 11 Stacks and Compilers 101

Stack operations in balanced symbol algorithm 102
Steps in evaluation of a postfix expression 103
Associativity rules 104
Various cases in operator precedence parsing 105
Infix to postfix conversion 106
Expression tree for (a+b)*(c-d) 107

Chapter 12 Utilities 108

A standard coding scheme 109
Representation of the original code by a tree 110
A slightly better tree 111
Optimal prefix code tree 112
Optimal prefix code 113
Huffman’s algorithm after each of first three merges 114
Huffman’s algorithm after each of last three merges 115
Encoding table (numbers on left are array indices) 116
IdNode data members: Word is a String ; Lines is a pointer to a Queue 117
The object in the tree is a copy of the temporary; after the insertion is complete, the destructor is

Copyright 1996 by Addison-Wesley Publishing Company v

called for the temporary 118

Chapter 13 Simulation 119

The Josephus problem 120
Sample output for the modem bank simulation: 3 modems; a dial in is attempted every minute; av-

erage connect time is 5 minutes; simulation is run for 19 minutes 121
Steps in the simulation 122
Priority queue for modem bank after each step 123

Chapter 14 Graphs and Paths 124

A directed graph 125
Adjacency list representation of graph in Figure 14.1; nodes in list i represent vertices adjacent to

i and the cost of the connecting edge 126
Information maintained by the Graph table 127
Data structures used in a shortest path calculation, with input graph taken from a file: shortest

weighted path from A to C is: A to B to E to D to C (cost 76) 128
Graph after marking the start node as reachable in zero edges 129
Graph after finding all vertices whose path length from the start is 1 130
Graph after finding all vertices whose shortest path from the start is 2 131
Final shortest paths 132
How the graph is searched in unweighted shortest path computation 133
Eyeball is at v; w is adjacent; Dw should be lowered to 6 134
If Dv is minimal among all unseen vertices and all edge costs are nonnegative, then it represents

the shortest path 135
Stages of Dijkstra’s algorithm 136
Graph with negative cost cycle 137
Topological sort 138
Stages of acyclic graph algorithm 139
Activity-node graph 140
Top: Event node grap; Bottom: Earliest completion time, latest completion time, and slack (addi-

tional edge item) 141

Chapter 15 Stacks and Queues 142

How the stack routines work: empty stack, Push(A) , Push(B) , Pop 143
Basic array implementation of the queue 144
Array implementation of the queue with wraparound 145
Linked list implementation of the stack 146
Linked list implementation of the queue 147
Enqueue operation for linked-list-based implementation 148

Chapter 16 Linked Lists 149

Basic linked list 150

Copyright 1996 by Addison-Wesley Publishing Company vi

Insertion into a linked list: create new node (Tmp), copy in X, set Tmp’s next pointer, set Cur-
rent ’s next pointer 151

Deletion from a linked list 152
Using a header node for the linked list 153
Empty list when header node is used 154
Doubly linked list 155
Empty doubly linked list 156
Insertion into a doubly linked list by getting new node and then changing pointers in order indicat-

ed 157
Circular doubly linked list 158

Chapter 17 Trees 159

A tree 160
Tree viewed recursively 161
First child/next sibling representation of tree in Figure 17.1 162
UNIX directory 163
The directory listing for tree in Figure 17.4 164
UNIX directory with file sizes 165
Trace of the Size function 166
Uses of binary trees: left is an expression tree and right is a Huffman coding tree 167
Result of a naive Merge operation 168
Aliasing problems in the Merge operation; T1 is also the current object 169
Recursive view used to calculate the size of a tree: ST = SL + SR + 1 170
Recursive view of node height calculation: HT = Max(HL+1, HR +1) 171
Preorder, postorder, and inorder visitation routes 172
Stack states during postorder traversal 173

Chapter 18 Binary Search Trees 174

Two binary trees (only the left tree is a search tree) 175
Binary search trees before and after inserting 6 176
Deletion of node 5 with one child, before and after 177
Deletion of node 2 with two children, before and after 178
Using the Size data member to implement FindKth 179
Balanced tree on the left has a depth of log N; unbalanced tree on the right has a depth of N–1 180
Binary search trees that can result from inserting a permutation 1, 2, and 3; the balanced tree in the

middle is twice as likely as any other 181
Two binary search trees: the left tree is an AVL tree, but the right tree is not (unbalanced nodes are

darkened) 182
Minimum tree of height H 183
Single rotation to fix case 1 184
Single rotation fixes AVL tree after insertion of 1 185
Symmetric single rotation to fix case 4 186
Single rotation does not fix case 2 187
Left-right double rotation to fix case 2 188

Copyright 1996 by Addison-Wesley Publishing Company vii

Double rotation fixes AVL tree after insertion of 5 189
Left-right double rotation to fix case 3 190
Red black tree properties 191
Example of a red black tree; insertion sequence is 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5,

55) 192
If S is black, then a single rotation between the parent and grandparent, with appropriate color

changes, restores property 3 if X is an outside grandchild 193
If S is black, then a double rotation involving X, the parent, and the grandparent, with appropriate

color changes, restores property 3 if X is an inside grandchild 194
If S is red, then a single rotation between the parent and grandparent, with appropriate color chang-

es, restores property 3 between X and P 195
Color flip; only if X’s parent is red do we continue with a rotation 196
Color flip at 50 induces a violation; because it is outside, a single rotation fixes it 197
Result of single rotation that fixes violation at node 50 198
Insertion of 45 as a red node 199
Deletion: X has two black children, and both of its sibling’s children are black; do a color flip 200
Deletion: X has two black children, and the outer child of its sibling is red; do a single rotation 201
Deletion: X has two black children, and the inner child of its sibling is red; do a double rotation 202
X is black and at least one child is red; if we fall through to next level and land on a red child, ev-

erything is good; if not, we rotate a sibling and parent 203
AA-tree properties 204
AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55, 35 205
Skew is a simple rotation between X and P 206
Split is a simple rotation between X and R; note that R’s level increases 207
After inserting 45 into sample tree; consecutive horizontal links are introduced starting at 35 208
After Split at 35; introduces a left horizontal link at 50 208
After Skew at 50; introduces consecutive horizontal nodes starting at 40 208
After Split at 40; 50 is now on the same level as 70, thus inducing an illegal left horizontal link

209
After Skew at 70; this introduces consecutive horizontal links at 30 209
After Split at 30; insertion is complete 209
When 1 is deleted, all nodes become level 1, introducing horizontal left links 210
Five-ary tree of 31 nodes has only three levels 211
B-tree of order 5 212
B-tree properties 213
B-tree after insertion of 57 into tree in Figure 18.70 214
Insertion of 55 in B-tree in Figure 18.71 causes a split into two leaves 215
Insertion of 40 in B-tree in Figure 18.72 causes a split into two leaves and then a split of the parent

node 216
B-tree after deletion of 99 from Figure 18.73 217

Chapter 19 Hash Tables 218

Linear probing hash table after each insertion 219
Quadratic probing hash table after each insertion (note that the table size is poorly chosen because

it is not a prime number) 220

Copyright 1996 by Addison-Wesley Publishing Company viii

Chapter 20 A Priority Queue: The Binary Heap 221

A complete binary tree and its array representation 222
Heap order property 223
Two complete trees (only the left tree is a heap) 224
Attempt to insert 14, creating the hole and bubbling the hole up 225
The remaining two steps to insert 14 in previous heap 226
Creation of the hole at the root 227
Next two steps in DeleteMin 228
Last two steps in DeleteMin 229
Recursive view of the heap 230
Initial heap (left); after PercolateDown(7) (right) 231
After PercolateDown(6) (left); after PercolateDown(5) (right) 231
After PercolateDown(4) (left); after PercolateDown(3) (right) 232
After PercolateDown(2) (left); after PercolateDown(1) and FixHeap terminates (right)

232
Marking of left edges for height one nodes 233
Marking of first left and subsequent right edge for height two nodes 233
Marking of first left and subsequent two right edges for height three nodes 234
Marking of first left and subsequent right edges for height 4 node 234
(Max) Heap after FixHeap phase 235
Heapsort algorithm 236
Heap after first DeleteMax 237
Heap after second DeleteMax 237
Initial tape configuration 238
Distribution of length 3 runs onto two tapes 239
Tapes after first round of merging (run length = 6) 239
Tapes after second round of merging (run length = 12) 239
Tapes after third round of merging 239
Initial distribution of length 3 runs onto three tapes 240
After one round of three-way merging (run length = 9) 240
After two rounds of three-way merging 240
Number of runs using polyphase merge 241
Example of run construction 242

Chapter 21 Splay Trees 243

Rotate-to-root strategy applied when node 3 is accessed 244
Insertion of 4 using rotate-to-root 245
Sequential access of items takes quadratic time 246
Zig case (normal single rotation) 247
Zig-zag case (same as a double rotation); symmetric case omitted 247
Zig-zig case (this is unique to the splay tree); symmetric case omitted 247
Result of splaying at node 1 (three zig-zigs and a zig) 248
The Remove operation applied to node 6: First 6 is splayed to the root, leaving two subtrees; a

FindMax on the left subtree is performed, raising 5 to the root of the left subtree; then the
right subtree can be attached (not shown) 249

Copyright 1996 by Addison-Wesley Publishing Company ix

Top-down splay rotations: zig (top), zig-zig (middle), and zig-zag (bottom) 250
Simplified top-down zig-zag 251
Final arrangement for top-down splaying 252
Steps in top-down splay (accessing 19 in top tree) 253

Chapter 22 Merging Priority Queues 254

Simplistic merging of heap-ordered trees; right paths are merged 255
Merging of skew heap; right paths are merged, and the result is made a left path 256
Skew heap algorithm (recursive viewpoint) 257
Change in heavy/light status after a merge 258
Abstract representation of sample pairing heap 259
Actual representation of above pairing heap; dark line represents a pair of pointers that connect

nodes in both directions 259
Recombination of siblings after a DeleteMin ; in each merge the larger root tree is made the left

child of the smaller root tree: (a) the resulting trees; (b) after the first pass; (c) after the first
merge of the second pass; (d) after the second merge of the second pass 260

CompareAndLink merges two trees 261

Chapter 23 The Disjoint Set Class 262

Definition of equivalence relation 263
A graph G (left) and its minimum spanning tree 264
Kruskal’s algorithm after each edge is considered 265
The nearest common ancestor for each request in the pair sequence (x,y), (u,z), (w,x), (z,w), (w,y),

is A, C, A, B, and y, respectively 266
The sets immediately prior to the return from the recursive call to D ; D is marked as visited and

NCA(D, v) is v ’s anchor to the current path 267
After the recursive call from D returns, we merge the set anchored by D into the set anchored by

C and then compute all NCA(C, v) for nodes v that are marked prior to completing C’s re-
cursive call 268

Forest and its eight elements, initially in different sets 269
Forest after Union of trees with roots 4 and 5 269
Forest after Union of trees with roots 6 and 7 270
Forest after Union of trees with roots 4 and 6 270
Forest formed by union-by-size, with size encoded as a negative number 271
Worst-case tree for N=16 272
Forest formed by union-by-height, with height encoded as a negative number 273
Path compression resulting from a Find (14) on the tree in Figure 23.12 274
Ackerman’s function and its inverse 275
Accounting used in union-find proof 276
Actual partitioning of ranks into groups used in the union-find proof 277

