## Chapter 1

## Pointers, Arrays, and Structures



## Pointer illustration



## Result of $* P t r=10$



## Uninitialized pointer


(a) Initial state; (b) Ptr1=Ptr2 starting from initial state;
(c) *Ptr1=*Ptr2 starting from initial state

| \& $\mathrm{A}[0]$ (1000) |  |
| :---: | :---: |
|  | A[0] |
| \& $\mathrm{A}[1]$ (1004) | A[1] |
| \& $\mathrm{A}[2]$ (1008) | A[2] |
| \&i (1012) | i |
| \& A (5620) | $\cdots$ |
|  | $\mathrm{A}=1000$ |
|  |  |

Memory model for arrays (assumes 4 byte int); declaration is int A[3]; int i;

```
1 size_t strlen( const char *Str );
2 char * strcpy( char *Lhs, const char *Rhs );
3 char * strcat( char *Lhs, const char *Rhs );
4 int strcmp( const char *Lhs, const char *Rhs );
```


## Some of the string routines in <string.h>

```
1 \text { void}
2 F( int i )
3 {
4 int A1[ 10 ];
5 int *A2 = new int [ 10 ];
6
7 ...
8 G( A1 );
9 G( A2 );
1 0
1 1 ~ / / ~ O n ~ r e t u r n , ~ a l l ~ m e m o r y ~ a s s o c i a t e d ~ w i t h ~ A 1 ~ i s ~ f r e e d
12 // On return, only the pointer A2 is freed;
13 // 10 ints have leaked
14 // delete [ ] A2; // This would fix the leak
15 }
```

Two ways to allocate arrays; one leaks memory

(a)


A2
(b)

Original

(c)


Original

(d)


Original


Array expansion: (a) starting point: A2 points at 10 integers; (b) after step 1: Original points at the 10 integers; (c) after steps 2 and 3: A2 points at 12 integers, the first 10 of which are copied from Original; (d) after step 4: the 10 integers are freed


Pointer arithmetic: $\mathrm{X}=\& \mathrm{~A}[3] ; \quad \mathrm{Y}=\mathrm{X}+4$

1 // Test that Strlen1 and Strlen2 give same answer
2 // Source file is ShowProf.cpp
3
4 \#include <iostream.h>
5
6 main ( )
7 \{
8 char Str[ 512 ];
9
10 while( cin >> Str )
11 \{
12 if( Strlen1 ( Str ) ! = Strlen2 (Str ) )
13 cerr << "Oops!!!!" << endl;
14 \}
15
16 return 0;
17 \}

| \%time | cumsecs | \#call | $\mathrm{ms} / \mathrm{call}$ | name |
| ---: | ---: | ---: | ---: | :--- |
| 26.6 | 0.34 | 25145 | 0.01 | _rs_7istreamFPc |
| 22.7 | 0.63 | 25144 | 0.01 | _Strlen2__FPCc |
| 14.8 | 0.82 |  |  | mcount |
| 12.5 | 0.98 | 25144 | 0.01 | _Strlen1__FPCc |
| 8.6 | 1.09 | 25145 | 0.00 | _do_ipfx__7istreamFi |
| 6.2 | 1.17 | 25145 | 0.00 | _eatwhite__7istreamFv |
| 4.7 | 1.23 | 204 | 0.29 | _read |
| 3.1 | 1.27 | 1 | 40.00 | _main |

First eight lines from prof for program

| \%time | cumsecs | \#call | $\mathrm{ms} / \mathrm{call}$ | name |
| ---: | ---: | ---: | ---: | :--- |
| 34.4 | 0.31 |  |  | mcount |
| 26.7 | 0.55 | 25145 | 0.01 | _rs_7istreamFPc |
| 8.9 | 0.63 | 25145 | 0.00 | _do_ipfx_7istreamFi |
| 6.7 | 0.69 | 25144 | 0.00 | _Strlen1__FPCc |
| 6.7 | 0.75 | 25144 | 0.00 | _Strlen2__FPCc |
| 6.7 | 0.81 | 25145 | 0.00 | _eatwhite__7istreamFv |
| 6.7 | 0.87 | 204 | 0.29 | _read |
| 3.3 | 0.90 | 1 | 30.00 | _main |

First eight lines from prof with highest optimization

```
struct Student
{
        char FirstName[ 40 ];
        char LastName[ 40 ];
        int StudentNum;
        double GradePointAvg;
};
```



## Student structure



Illustration of a shallow copy in which only pointers are copied


## Illustration of a simple linked list

## Chapter 2

## Objects and Classes

```
    1 // MemoryCell class
2 // int Read( ) --> Returns the stored value
3 // void Write( int X ) --> X is stored
4
5 class MemoryCell
{ {
7 public:
8 // Public member functions
9 int Read( ) { return StoredValue; }
10 void Write( int X ) { StoredValue = X; }
11 private:
1 2 ~ / / ~ P r i v a t e ~ i n t e r n a l ~ d a t a ~ r e p r e s e n t a t i o n
1 3 \text { int StoredValue;}
14 };
```

A complete declaration of a MemoryCell class


MemoryCell members: Read and Write are accessible, but StoredValue is hidden

```
1 // Exercise the MemoryCell class
2
3 main( )
4 {
5 MemoryCell M;
6
7 M.Write( 5 );
8 cout << "Cell contents are " << M.Read( ) << '\n';
    // The next line would be illegal if uncommented
10 // cout << "Cell contents are " << M.StoredValue << '\n';
11 return 0;
12 }
```

A simple test routine to show how MemoryCell objects are accessed

```
// MemoryCell interface
2 // int Read( ) --> Returns the stored value
3 // void Write( int X ) --> X is stored
4
5 class MemoryCell
{
public:
            int Read( );
            void Write( int X );
        private:
            int StoredValue;
    };
13
14
15
16 // Implementation of the MemoryCell class members
17
18 int
19 MemoryCell::Read( )
20 {
21 return StoredValue;
22 }
23
24 void
25 MemoryCell::Write( int X )
26 {
27 StoredValue = X;
28 }
```


## A more typical MemoryCell declaration in which interface and implementation are separated

1 // BitArray class: support access to an array of bits
2 //
3 // CONSTRUCTION: with (a) no initializer or (b) an integer
4 // that specifies the number of bits
5 // All copying of BitArray objects is DISALLOWED
$6 / /$
$7 / / * * * * * * * * * * * * * * * * * * P$ UBLIC OPERATIONS**********************
8 // void ClearAllBits( ) --> Set all bits to zero
9 // void SetBit ( int i ) --> Turn bit i on
$10 / /$ void ClearBit( int $i$ ) --> Turn bit i off
11 // int GetBit ( int i ) --> Return status of bit i
12 // int NumItems ( ) --> Return capacity of bit array
13
14 \#include <iostream.h>
15
16 class BitArray
17 \{
public:
// Constructor
BitArray ( int Size $=320$ ); // Basic constructor
// Destructor
~BitArray( ) \{ delete [ ] TheArray; \}
// Member Functions
void ClearAllBits ( ) ;
void SetBit ( int i ) ;
void ClearBit ( int i ) ;
int GetBit( int i ) const;
int NumItems ( ) const \{ return N; \}
private:
// 3 data members
int *TheArray; // The bit array
int N; // Number of bits
int ArraySize; // Size of the array
enum \{ IntSz = sizeof ( int ) * 8 \};
int IsInRange( int $i$ ) const;// Check range with error msg
// Disable operator= and copy constructor
const BitArray \& operator=( const BitArray \& Rhs );
BitArray ( const BitArray \& Rhs );
43 \};

Interface for BitArray class


## BitArray members

```
1 BitArray A; // Call with Size = 320
2 BitArray B( 50 ); // Call with Size = 50
3 BitArray C = 50; // Same as above
4 \text { BitArray D[ 50 ]; // Calls 50 constructors, with Size 320}
5 BitArray *E = new BitArray; // Allocates BitArray of Size 320
6 E = new BitArray ( 20 );// Allocates BitArray of size 20; leaks
7 BitArray F = "wrong"; // Does not match basic constructor
8 BitArray G( ); // This is wrong!
```


## Construction examples

## Chapter 3

## Templates

| Array position | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Initial State: | 8 | 5 | 9 | 2 | 6 | 3 |
| After A[0..1] is sorted: | 5 | 8 | 9 | 2 | 6 | 3 |
| After A[0..2] is sorted: | 5 | 8 | 9 | 2 | 6 | 3 |
| After A[0..3] is sorted: | 2 | 5 | 8 | 9 | 6 | 3 |
| After A[0..4] is sorted: | 2 | 5 | 6 | 8 | 9 | 3 |
| After A[0..5] is sorted: | 2 | 3 | 5 | 6 | 8 | 9 |

Basic action of insertion sort (shaded part is sorted)

| Array position | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Initial State: | 8 | 5 |  |  |  |  |
| After A[0..1] is sorted: | 5 | 8 | 9 |  |  |  |
| After A[0..2] is sorted: | 5 | 8 | 9 | 2 |  |  |
| After A[0..3] is sorted: | 2 | 5 | 8 | 9 | 6 |  |
| After A[0..4] is sorted: | 2 | 5 | 6 | 8 | 9 | 3 |
| After A[0..5] is sorted: | 2 | 3 | 5 | 6 | 8 | 9 |

Closer look at action of insertion sort (dark shading indicates sorted area; light shading is where new element was placed)

```
1 // Typical template interface
2 template <class Etype>
3 class ClassName
4 {
5 public:
            // Public members
        private:
            // Private members
    };
10
11
12 // Typical member implementation
1 3 \text { template <class Etype>}
14 ReturnType
15 ClassName<Etype>::MemberName( Parameter List ) /* const */
16 {
17 // Member body
18 }
```


## Typical layout for template interface and member functions

## Chapter 4

## Inheritance

```
class Derived : public Base
2 {
```

3
4
5

```
        // Any members that are not listed are inherited unchanged
        // except for constructor, destructor,
        // copy constructor, and operator=
    public:
        // Constructors, and destructors if defaults are not good
        // Base members whose definitions are to change in Derived
        // Additional public member functions
    private:
        // Additional data members (generally private)
        // Additional private member functions
        // Base members that should be disabled in Derived
```


## General layout of public inheritance

| Public inheritance situation | Public | Protected | Private |
| :---: | :---: | :---: | :---: |
| Base class member function accessing $M$ | Yes | Yes | Yes |
| Derived class member function accessing $M$ | Yes | Yes | No |
| main, accessing $B . M$ | Yes | No | No |
| main, accessing $D . M$ | Yes | No | No |
| Derived class member function accessing | Yes | No | No |
| $B$ is an object of the base class; $D$ is an object of the publicly derived class; $M$ is a |  |  |  |
| member of the base class. |  |  |  |

Access rules that depend on what M's visibility is in the base class

| Public inheritance situation | Public | Protected | Private |
| :---: | :---: | :---: | :---: |
| F accessing $B . M B$ | Yes | Yes | Yes |
| F accessing $D . M D$ | Yes | No | No |
| Faccessing $D . M B$ | Yes | Yes | Yes |
| $B$ is an object of the base class; $D$ is an object of the publicly derived class; $M B$ is a |  |  |  |
| member of the base class. $M D$ is a member of the derived class. $F$ is a friend of the |  |  |  |
| base class (but not the derived class) |  |  |  |

Friendship is not inherited

```
    const VectorSize = 20;
    Vector<int> V( VectorSize );
    BoundedVector<int> BV( VectorSize, 2 * VectorSize - 1 );
        ...
    BV[ VectorSize ] = V[ 0 ];
Vector and BoundedVector classes with calls to
operator [] that are done automatically and correctly
```

```
    Vector<int> *Vptr;
    const int Size = 20;
    cin >> Low;
    if( Low )
    Vptr = new BoundedVector<int>( Low, Low + Size - 1 );
    else
    Vptr = new Vector<int>( Size )
    •••
    (*Vptr) [ Low ] = 0; // What does this mean?
Vector and BoundedVector classes
```



The hierarchy of shapes used in an inheritance example

1. Nonvirtual functions: Overloading is resolved at compile time. To ensure consistency when pointers to objects are used, we generally use a nonvirtual function only when the function is invariant over the inheritance hierarchy (that is, when the function is never redefined). The exception to this rule is that constructors are always nonvirtual, as mentioned in Section 4.5.
2. Virtual functions: Overloading is resolved at run time. The base class provides a default implementation that may be overridden by the derived classes. Destructors should be virtual functions, as mentioned in Section 4.5.
3. Pure virtual functions: Overloading is resolved at run time. The base class provides no implementation. The absence of a default requires that the derived classes provide an implementation.

## Summary of nonvirtual, virtual, and pure virtual functions

1. Provide a new constructor.
2. Examine each virtual function to decide if we are willing to accept its defaults; for each virtual function whose defaults we do not like, we must write a new definition.
3. Write a definition for each pure virtual function.
4. Write additional member functions if appropriate.

## Programmer responsibilities for derived class

## Chapter 5

## Algorithm Analysis



## Running times for small inputs



Running time for moderate inputs

| Function | Name |
| :---: | :---: |
| $c$ | Constant |
| $\log N$ | Logarithmic |
| $\log ^{2} N$ | Log-squared |
| $N$ | Linear |
| $N \log N$ | $N \log N$ |
| $N^{2}$ | Quadratic |
| $N^{3}$ | Cubic |
| $2^{N}$ | Exponential |

Functions in order of increasing growth rate

| j j+1 |  |
| :---: | :---: |
| $<0$ | Sj+1,q |
| $<S j+1, q$ |  |

## The subsequences used in Theorem 5.2



The subsequences used in Theorem 5.3. The sequence from $p$ to $q$ has sum at most that of the subsequence from $i$ to $q$. On the left, the sequence from $i$ to $q$ is itself not the maximum (by Theorem 5.2). On the right, the sequence from $i$ to $q$ has already been seen.

DEFINITION: (Big-Oh) $T(\quad)=O(\quad)$ if there are positive constants $c$ and $N_{0}$ such that $T(\quad) \leq c F(\quad)$ when $N \geq N_{0}$.

DEFINITION: (Big-Omega) $T(\quad)=\Omega(\quad)$ if there are positive constants $c$ and $N_{0}$ such that $T(\quad) \geq c F(\quad)$ when $N \geq N_{0}$.

DEFINITION: (Big-Theta) $T(\quad)=\Theta(\quad)$ if and only if $T(\quad)=O(\quad)$ and $T(\quad)=\Omega(\quad)$.

DEFINITION: (Little-Oh) $T(\quad)=o(\quad)$ if there are positive constants $c$ and $N_{0}$ such that $T(\quad)<c F(\quad)$ when $N \geq N_{0}$.

| Mathematical expression | Relative rates of growth |
| :---: | :--- |
| $T(N)=O(F(N))$ | Growth of $T(N)$ is $\leq$ growth of $F(N)$ |
| $T(N)=\Omega(F(N))$ | Growth of $T(N)$ is $\geq$ growth of $F(N)$ |
| $T(N)=\Theta(F(N))$ | Growth of $T(N)$ is = growth of $F(N)$ |
| $T(N)=o(F(N))$ | Growth of $T(N)$ is < growth of $F(N)$ |

Meanings of the various growth functions

| $N$ | $O\left(N^{3}\right)$ | $O\left(N^{2}\right)$ | $O(N \log N)$ | $O(N)$ |
| :---: | :---: | :---: | :---: | :---: |
| 10 | 0.00103 | 0.00045 | 0.00066 | 0.00034 |
| 100 | 0.47015 | 0.01112 | 0.00486 | 0.00063 |
| 1,000 | 448.77 | 1.1233 | 0.05843 | 0.00333 |
| 10,000 | NA | 111.13 | 0.68631 | 0.03042 |
| 100,000 | NA | NA | 8.01130 | 0.29832 |

Observed running times (in seconds) for various maximum contiguous subsequence sum algorithms

| $N$ | CPU time $T$ <br> (milliseconds) | $T / N$ | $T / N^{2}$ | $T /(N \log N)$ |
| :---: | :---: | :---: | :---: | :---: |
| 10,000 | 100 | 0.01000000 | 0.00000100 | 0.00075257 |
| 20,000 | 200 | 0.01000000 | 0.00000050 | 0.00069990 |
| 40,000 | 440 | 0.01100000 | 0.00000027 | 0.00071953 |
| 80,000 | 930 | 0.01162500 | 0.00000015 | 0.00071373 |
| 160,000 | 1960 | 0.01225000 | 0.00000008 | 0.00070860 |
| 320,000 | 4170 | 0.01303125 | 0.00000004 | 0.00071257 |
| 640,000 | 8770 | 0.01370313 | 0.00000002 | 0.00071046 |

Empirical running time for $N$ binary searches in an $N$-item array

## Chapter 6

## Data Structures

```
1 #include <iostream.h>
2 #include "Stack.h"
3
4 // Simple test program for stacks
5
6 main( )
7 {
8 Stack<int> S;
9
10 for( int i = 0; i < 5; i++ )
11
12
13
14
15
16 cout << ' ' << S.Top( );
S.Pop( );
    } while( !S.IsEmpty( ) );
    cout << '\n';
    return 0;
22 }
```


## Sample stack program; output is <br> Contents: 43210



> Stack model: input to a stack is by Push, output is by Top, deletion is by Pop

```
1 #include <iostream.h>
2 #include "Queue.h"
3
4 // Simple test program for queues
5
6 main( )
7 {
8 Queue<int> Q;
9
10 for( int i = 0; i < 5; i++ )
11
12
13 cout << "Contents:";
14
15
16 cout << ' ' << Q.Front ( );
17 Q.Dequeue( );
18 } while( !Q.IsEmpty( ) );
19 cout << '\n';
20
21 return 0;
22 }
```


## Sample queue program; output is <br> Contents:0 1234



## Queue model: input is by Enqueue, output is by Front, deletion is by Dequeue

```
1 #include <iostream.h>
2 #include "List.h"
3
4 // Simple test program for lists
5
6 \mp@code { m a i n ( ~ ) }
7 {
8 List<int> L;
4 ListItr<int> P = L;
1 0
1 1 ~ / / ~ R e p e a t e d l y ~ i n s e r t ~ n e w ~ i t e m s ~ a s ~ f i r s t ~ e l e m e n t s
1 2
13
14
1 5
16
1 7
1 8 \text { cout << "Contents:";}
19 for( P.First( ); +P; ++P )
20
21
22
23 return 0;
24 }
```


## Sample list program; output is Contents: $\begin{array}{llll}4 & 3 & 2 & 1\end{array}$ 0 end



Link list model: inputs are arbitrary and ordered, any item may be output, and iteration is supported, but this data structure is not time-efficient


## A simple linked list



## A tree



Expression tree for $(a+b)$ * $(c-d)$

```
    1 #include <iostream.h>
2 #include "Bst.h"
3
4 // Simple test program for binary search trees
5
6 main( )
7 {
8 SearchTree<String> T;
9
10 T.Insert( "Becky" );
11
1 2
13
14
15
16
17
1 8
19
20
21
22
23
24
25 else
26
27
28 cout << '\n';
29
30
    return 0;
31 }
```


## Sample search tree program;

output is Found Becky; Mark not found;


Binary search tree model; the binary search is extended to allow insertions and deletions

```
1 #include <iostream.h>
2 #include "Hash.h"
3
4 // A good hash function is given in Chapter 19
5 unsigned int Hash( const String & Element, int TableSize );
6
7 // Simple test program for hash tables
8
9 main( )
10 {
11 HashTable<String> H;
1 2
13
14
15
    const String & Result2 = H.Find( "Mark" );
    if( H.WasFound( ) )
            cout << " Found " << Result2 << ';';
    else
            cout << " Mark not found; ";
    cout << '\n';
    return 0;
24 }
```


## Sample hash table program; output is Found Becky; Mark not found;



## The hash table model: any named item can be accessed or deleted in essentially constant time

```
1 #include <iostream.h>
2 #include "BinaryHeap.h"
3
4 // Simple test program for priority queues
5
6 \mp@code { m a i n ( ~ ) }
7 {
8 BinaryHeap<int> PQ;
9
10 PQ.Insert( 4 ); PQ.Insert( 2 ); PQ.Insert( 1 );
1 1
1 2
1 3
14
1 5
16 cout << ' ' << PQ.FindMin( );
17 PQ.DeleteMin( );
18 } while( !PQ.IsEmpty( ) );
19 cout << '\n';
20
21 return 0;
22 }
```


## Sample program for priority queues; output is Contents: 01234



Priority queue model: only the minimum element is accessible

| Data <br> Structure | Access | Comments |
| :---: | :---: | :---: |
| Stack | Most recent only, Pop, $O(1)$ | Very very fast |
| Queue | Least recent only, Dequeue, $O(1)$ | Very very fast |
| Linked list | Any item | $O(N)$ |
| Search Tree | Any item by name or rank, $O(\log N)$ | Average case, can be made <br> worst case |
| Hash Table | Any named item, $O(1)$ | Almost certain |
| Priority Queue | FindMin, $O(1)$, <br> DeleteMin, $O(\log N)$ | Insert is $O(1)$ on <br> average $O(\log N)$ worst <br> case |

## Summary of some data structures

## Chapter 7

## Recursion

TOP: \begin{tabular}{c}
S(2) <br>

\cline { 2 - 2 } | $S(3)$ |
| :---: |
| $\operatorname{main}(4)$ |

\end{tabular}

## Stack of activation records



## Trace of the recursive calculation of the Fibonacci numbers

- Divide: Smaller problems are solved recursively (except, of course, base cases).
- Conquer: The solution to the original problem is then formed from the solutions to the subproblems.


## Divide-and-conquer algorithms

| First Half |  |  |  | Second Half |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | -3 | 5 | -2 | -1 | 2 | 6 | -2 | Values |
| $4^{*}$ | 0 | 3 | -2 | -1 | 1 | $7^{*}$ | 5 | Running Sums |
| Running Sum from the |  |  |  |  |  |  |  |  |
| mum for each half) |  |  |  |  |  |  |  |  |$]$

Dividing the maximum contiguous subsequence problem into halves


## Trace of recursive calls for recursive maximum contiguous subsequence sum algorithm

Assuming N is a power of 2 , the solution to the equation $T(N)=2 T(N / 2)+N$, with initial condition $T(1)=1$ is $T(N)=N \log N+N$.

## Basic divide-and-conquer running time theorem

 is

$$
T()= \begin{cases}O\left(\text { if } A>B^{k}\right. \\ O(\quad) & \text { if } A=B^{k} \\ O(\quad) & \text { if } A<B^{k}\end{cases}
$$

## General divide-and-conquer running time theorem



Some of the subproblems that are solved recursively in Figure 7.15


Alternative recursive algorithm for coin-changing problem

## Chapter 8 Sorting Algorithms

- Words in a dictionary are sorted (and case distinctions are ignored).
- Files in a directory are often listed in sorted order.
- The index of a book is sorted (and case distinctions are ignored).
- The card catalog in a library is sorted by both author and title.
- A listing of course offerings at a university is sorted, first by department and then by course number.
- Many banks provide statements that list checks in increasing order (by check number).
- In a newspaper, the calendar of events in a schedule is generally sorted by date.
- Musical compact disks in a record store are generally sorted by recording artist.
- In the programs that are printed for graduation ceremonies, departments are listed in sorted order, and then students in those departments are listed in sorted order.


## Examples of sorting

| Operators | Definition |
| :---: | :---: |
| operator> ( A, B ) | return $B<A$; |
| operator $>=(\mathrm{A}, \mathrm{B})$ | return ! ( $A<B$ ) ; |
| operator $<=(\mathrm{A}, \mathrm{B})$ | return ! ( $\mathrm{B}^{\text {< A }}$ ) ; |
| operator! = ( A, B ) | return $A<B\| \| B<A$; |
| operator $==(\mathrm{A}, \mathrm{B})$ | return ! ( $A<B\| \| B<A)$; |

## Deriving the relational and equality operators from

 operator<| Original | $\mathbf{8 1}$ | $\mathbf{9 4}$ | $\mathbf{1 1}$ | $\mathbf{9 6}$ | $\mathbf{1 2}$ | $\mathbf{3 5}$ | $\mathbf{1 7}$ | $\mathbf{9 5}$ | $\mathbf{2 8}$ | $\mathbf{5 8}$ | $\mathbf{4 1}$ | $\mathbf{7 5}$ | $\mathbf{1 5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| After 5-sort | 35 | 17 | 11 | 28 | 12 | 41 | 75 | 15 | 96 | 58 | 81 | 94 | 95 |
| After 3-sort | 28 | 12 | 11 | 35 | 15 | 41 | 58 | 17 | 94 | 75 | 81 | 96 | 95 |
| After 1-sort | 11 | 12 | 15 | 17 | 28 | 35 | 41 | 58 | 75 | 81 | 94 | 95 | 96 |

Shellsort after each pass, if increment sequence is $\{1,3,5\}$

| $\mathbf{N}$ | Insertion <br> sort | Shellsort |  |  |
| ---: | ---: | ---: | ---: | ---: |
|  |  | Odd gaps only | Dividing by 2.2 |  |
| 1,000 | 122 | 11 | 11 | 9 |
| 2,000 | 483 | 26 | 21 | 23 |
| 4,000 | 1,936 | 61 | 59 | 54 |
| 8,000 | 7,950 | 153 | 141 | 114 |
| 16,000 | 32,560 | 358 | 322 | 269 |
| 32,000 | 131,911 | 869 | 752 | 575 |
| 64,000 | 520,000 | 2,091 | 1,705 | 1,249 |

Running time (milliseconds) of the insertion sort and Shellsort with various increment sequences


Linear-time merging of sorted arrays (first four steps)

Bptr

Bptr

| 1 | 13 | 24 | 26 |
| :--- | :--- | :--- | :--- |



Linear-time merging of sorted arrays (last four steps)

The basic algorithm Quicksort(S) consists of the following four steps:

1. If the number of elements in $S$ is 0 or 1 , then return.
2. Pick any element $v$ in $S$. This is called the pivot.
3. Partition $S-\{v\}$ (the remaining elements in $S$ ) into two disjoint groups: $L=\{\quad \mid \quad$ and $R=$ $\{x \in S-\{v\} \mid x \geq v\}$.
4. Return the result of Quicksort $(L)$ followed by $v$ followed by Quicksort(R).

## Basic quicksort algorithm


$\downarrow$ Select pivot


The steps of quicksort

Because recursion allows us to take the giant leap of faith, the correctness of the algorithm is guaranteed as follows:

- The group of small elements is sorted, by virtue of the recursion.
- The largest element in the group of small elements is not larger than the pivot, by virtue of the partition.
- The pivot is not larger than the smallest element in the group of large elements, by virtue of the partition.
- The group of large elements is sorted, by virtue of the recursion.


## Correctness of quicksort

| 8 | 1 | 4 | 9 | 0 | 3 | 5 | 2 | 7 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Partitioning algorithm: pivot element 6 is placed at the end

| 8 | 1 | 4 | 9 | 0 | 3 | 5 | 2 | 7 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Partitioning algorithm: i stops at large element 8; j stops at small element 2

| 2 | 1 | 4 | 9 | 0 | 3 | 5 | 8 | 7 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Partitioning algorithm: out-of-order elements 8 and 2 are swapped

| 2 | 1 | 4 | 9 | 0 | 3 | 5 | 8 | 7 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Partitioning algorithm: i stops at large element 9; j stops at small element 5

| 2 | 1 | 4 | 5 | 0 | 3 | 9 | 8 | 7 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Partitioning algorithm: out-of-order elements 9 and 5 are swapped

| 2 | 1 | 4 | 5 | 0 | 3 | 9 | 8 | 7 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Partitioning algorithm: i stops at large element 9; j stops at small element 3

| 2 | 1 | 4 | 5 | 0 | 3 | 6 | 8 | 7 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Partitioning algorithm: swap pivot and element in position i

| 8 | 1 | 4 | 9 | 6 | 3 | 5 | 2 | 7 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Original array

| 0 | 1 | 4 | 9 | 6 | 3 | 5 | 2 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Result of sorting three elements (first, middle, and last)

| 0 | 1 | 4 | 9 | 7 | 3 | 5 | 2 | 6 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Result of swapping the pivot with next to last element

- We should not swap the pivot with the element in the last position. Instead, we should swap it with the element in the next to last position.
- We can start i at Low+1 and jat High-2.
- We are guaranteed that, whenever i searches for a large element, it will stop because in the worst case it will encounter the pivot (and we stop on equality).
- We are guaranteed that, whenever $j$ searches for a small element, it will stop because in the worst case it will encounter the first element (and we stop on equality).


## Median-of-three partitioning optimizations

1. If the number of elements in $S$ is 1 , then presumably $k$ is also 1 , and we can return the single element in $S$.
2. Pick any element $v$ in $S$. This is the pivot.
3. Partition $S-\{v\}$ into $L$ and $R$, exactly as was done for quicksort.
4. If $k$ is less than or equal to the number of elements in $L$, then the item we are searching for must be in L. Call Quickselect( $L, k)$ recursively. Otherwise, if $k$ is exactly equal to one more than the number of items in $L$, then the pivot is the $k$ th smallest element, and we can return it as the answer. Otherwise, the $k$ th smallest element lies in $R$, and it is the ( $k-|L|-$ 1)th smallest element in $R$. Again, we can make a recursive call and return the result.

## Quickselect algorithm



## Using an array of pointers to sort

$\operatorname{Loc}[0] \operatorname{Loc}[1] \operatorname{Loc}[2] \operatorname{Loc}[3] \operatorname{Loc}[4]$

| 1 | 0 | 4 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |


| 200 | 100 | 400 | 500 | 300 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~A}[0]$ | $\mathrm{A}[1]$ | $\mathrm{A}[2]$ | $\mathrm{A}[3]$ | $\mathrm{A}[4]$ |

## Data structure used for in-place rearrangement

## Chapter 9

Randomization

| Winning Tickets | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 0.135 | 0.271 | 0.271 | 0.180 | 0.090 | 0.036 |

Distribution of lottery winners if expected number of win-
ners is 2

An important nonuniform distribution that occurs in simulations is the Poisson distribution. Occurrences that happen under the following circumstances satisfy the Poisson distribution:

- The probability of one occurrence in a small region is proportional to the size of the region.
- The probability of two occurrences in a small region is proportional to the square of the size of the region and is usually small enough to be ignored.
- The event of getting $k$ occurrences in one region and the event of getting $j$ occurrences in another region disjoint from the first region are independent. (Technically this statement means that you can get the probability of both events simultaneously occurring by multiplying the probability of individual events.)
- The mean number of occurrences in a region of some size is known.

Then if the mean number of occurrences is the constant $a$, then the probability of exactly $k$ occurrences is $a^{k} e^{-a} / k!$.

## Poisson distribution

## Chapter 10

Fun and Games

|  | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | t | h | i | s |
| 1 | w | a | t | s |
| 2 | o | a | h | g |
| 3 | f | g | d | t |

Sample word search grid

```
for each word W in the word list
    for each row R
        for each column C
            for each direction D
                check if W exists at row R, column C
                        in direction D
```


## Brute-force algorithm for word search puzzle

```
for each row R
    for each column C
        for each direction D
            for each word length L
                check if L chars starting at row R column C
                        in direction D form a word
```


## Alternate algorithm for word search puzzle

```
for each row R
    for each column C
        for each direction D
            for each word length L
                check if L chars starting at row R column
                            C in direction D form a word
            if they do not form a prefix,
                        break; // the innermost loop
```

Improved algorithm for word search puzzle; incorporates a prefix test

1. If the position is terminal (that is, can immediately be evaluated), return its value.
2. Otherwise, if it is the computer's turn to move, return the maximum value of all positions reachable by making one move. The reachable values are calculated recursively.
3. Otherwise, it is the human's turn to move. Return the minimum value of all positions reachable by making one move. The reachable values are calculated recursively.

## Basic minimax algorithm



Alpha-beta pruning: After $\mathrm{H}_{2 \mathrm{~A}}$ is evaluated, $\mathrm{C}_{2}$, which is the minimum of the $\mathrm{H}_{2}$ 's, is at best a draw. Consequently, it cannot be an improvement over $\mathrm{C}_{1}$. We therefore do not need to evaluate $\mathrm{H}_{2 \mathrm{~B}}, \mathrm{H}_{2 \mathrm{C}}$, and $\mathrm{H}_{2 \mathrm{D}}$, and can proceed directly to $\mathrm{C}_{3}$


## Two searches that arrive at identical positions

## Chapter 11

## Stacks and Compilers



Stack operations in balanced symbol algorithm

Postfix Expression: $12-45 \wedge 3 * 6 * 722 \wedge$


Steps in evaluation of a postfix expression

| Infix expression | Postfix expression | Associativity |
| :---: | :---: | :---: |
| $2+3+4$ | $23+4+$ | Left associative: Input + is <br> lower than stack + |
| $2 \wedge 3 \wedge 4$ | $234 \wedge \wedge$ | Right associative: $\ln p u t \wedge$ <br> higher than stack $\wedge$ |

## Associativity rules

- Operands: Immediately output.
- Close parenthesis: Pop stack symbols until an open parenthesis is seen.
- Operator: Pop all stack symbols until we see a symbol of lower precedence or a right associative symbol of equal precedence. Then push the operator.
- End of input: Pop all remaining stack symbols.


## Various cases in operator precedence parsing

Infix: $1-2 \wedge 3 \wedge 3-(4+5 \star 6) \star 7$


Infix to postfix conversion


Expression tree for $(a+b)$ * $(c-d)$

## Chapter 12

## Utilities

| Character | Code | Frequency | Total Bits |
| :---: | :---: | :---: | :---: |
| a | 000 | 10 | 30 |
| e | 001 | 15 | 45 |
| i | 010 | 12 | 36 |
| s | 011 | 3 | 9 |
| t | 100 | 4 | 12 |
| sp | 101 | 13 | 39 |
| nl | 110 | 1 | 3 |
| Total |  |  | $\mathbf{1 7 4}$ |

A standard coding scheme


Representation of the original code by a tree


## A slightly better tree



## Optimal prefix code tree

| Character Code Frequency Total Bits <br> a 001 10 30 <br> e 01 15 30 <br> i 10 12 24 <br> s 00000 3 15 <br> t 0001 4 16 <br> sp 11 13 26 <br> nl 00001 1 5 <br> Total  $\mathbf{1 4 6}$  |
| :--- |

$a^{10}$
$e^{15}$
(i)
$\mathrm{S}^{3}$


$\mathrm{a}^{10} \mathrm{e}^{15} \mathrm{~B}^{12} \mathrm{e}^{4}$
$a^{10}$

(i) 12


$e^{15}$

$(s p)^{13}$


## Huffman's algorithm after each of first three merges





Huffman's algorithm after each of last three merges

|  | Character | Weight | Parent | Child Type |
| :---: | :---: | :---: | :---: | :---: |
| 0 | a | 10 | 9 | 1 |
| 1 | e | 15 | 11 | 1 |
| 2 | i | 12 | 10 | 0 |
| 3 | s | 3 | 7 | 0 |
| 4 | t | 4 | 8 | 1 |
| 5 | sp | 13 | 10 | 1 |
| 6 | nl | 1 | 7 | 1 |
| 7 | T1 | 4 | 8 | 0 |
| 8 | T2 | 8 | 9 | 0 |
| 9 | T3 | 18 | 11 | 0 |
| 10 | T4 | 25 | 12 | 1 |
| 11 | T5 | 33 | 12 | 0 |
| 12 | T6 | 58 | 0 |  |
| CO | (numbers on left are array indices) |  |  |  |



IdNode data members: Word is a String; Lines is a pointer to a Queue


The object in the tree is a copy of the temporary; after the insertion is complete, the destructor is called for the temporary

## Chapter 13

## Simulation

1. At the start, the potato is at player 1 ; after one pass it is at player 2.
2. Player 2 is eliminated, player 3 picks up the potato, and after one pass it is at player 4.
3. Player 4 is eliminated, player 5 picks up the potato and passes it to player 1.
4. Player 1 is eliminated, player 3 picks up the potato, and passes it to player 5 .
5. Player 5 is eliminated, so player 3 wins.


## The Josephus problem

```
    1 \text { User 0 dials in at time 0 and connects for 1 minutes}
2 User O hangs up at time 1
3 User 1 dials in at time 1 and connects for 5 minutes
4 \text { User 2 dials in at time 2 and connects for 4 minutes}
5 \text { User 3 dials in at time 3 and connects for } 1 1 \text { minutes}
6 \text { User 4 dials in at time 4 but gets busy signal}
7 \text { User 5 dials in at time 5 but gets busy signal}
8 \text { User 6 dials in at time 6 but gets busy signal}
9 \text { User 1 hangs up at time 6}
1 0 \text { User 2 hangs up at time 6}
1 1 \text { User } 7 \text { dials in at time 7 and connects for 8 minutes}
1 2 \text { User } 8 \text { dials in at time 8 and connects for 6 minutes}
1 3 \text { User } 9 \text { dials in at time 9 but gets busy signal}
1 4 \text { User 10 dials in at time 10 but gets busy signal}
1 5 \text { User } 1 1 \text { dials in at time 11 but gets busy signal}
1 6 \text { User } 1 2 \text { dials in at time 12 but gets busy signal}
1 7 \text { User } 1 3 \text { dials in at time 13 but gets busy signal}
1 8 \text { User 3 hangs up at time 14}
1 9 \text { User 14 dials in at time 14 and connects for 6 minutes}
2 0 \text { User } 8 \text { hangs up at time 14}
21 User 15 dials in at time 15 and connects for 3 minutes
2 2 \text { User } 7 \text { hangs up at time 15}
23 User 16 dials in at time 16 and connects for 5 minutes
2 4 \text { User } 1 7 \text { dials in at time 17 but gets busy signal}
25 User 15 hangs up at time 18
2 6 \text { User } 1 8 \text { dials in at time 18 and connects for 7 minutes}
27 User 19 dials in at time 19 but gets busy signal
```


## Sample output for the modem bank simulation: 3 modems; a dial in is attempted every minute; average connect time is 5 minutes; simulation is run for 19 minutes

1. The first Dial In request is inserted
2. After DialIn is removed, the request is connected resulting in a Hangup and a replacement DialIn request
3. A Hangup request is processed
4. A Dial In request is processed resulting in a connect. Thus both a Hangup and DialIn event are added (three times)
5. A DialIn request fails; a replacement DialIn is generated (three times)
6. A Hangup request is processed (twice)
7. A DialIn request succeeds, Hangup and DialIn are added.

## Steps in the simulation



Priority queue for modem bank after each step

## Chapter 14

## Graphs and Paths



## A directed graph



Adjacency list representation of graph in Figure 14.1; nodes in list $i$ represent vertices adjacent to $i$ and the cost of the connecting edge

- Dist: The length of the shortest path (either weighted or unweighted, depending on the algorithm) from the starting vertex to this vertex. This value is computed by the shortest path algorithm.
- Prev: The previous vertex on the shortest path to this vertex.
- Name: The name corresponding to this vertex. This is established when the vertex is placed into the dictionary and will never change. None of the shortest path algorithms examine this member. It is only used to print a final path.
- Adj: A pointer to a list of adjacent vertices. This is established when the graph is read. None of the shortest path algorithms will change the pointer or the linked list.


## Information maintained by the Graph table



Data structures used in a shortest path calculation, with input graph taken from a file: shortest weighted path from A to $C$ is: $A$ to $B$ to $E$ to $D$ to $C$ (cost 76)


Graph after marking the start node as reachable in zero edges


## Graph after finding all vertices whose path length from the start is 1



Graph after finding all vertices whose shortest path from the start is 2


Final shortest paths


How the graph is searched in unweighted shortest path computation


Eyeball is at $v ; w$ is adjacent; $D_{w}$ should be lowered to 6


If $D_{V}$ is minimal among all unseen vertices and all edge costs are nonnegative, then it represents the shortest path


## Stages of Dijkstra's algorithm



## Graph with negative cost cycle



$V_{1}$

$V_{0}$

$V_{2}$
$V_{3}$
$V_{4}$
$V_{2}$
$V_{3}$
$V_{5}$
$V_{6}$
$\left(V_{5}\right)^{0}$

Topological sort


Stages of acyclic graph algorithm


Activity-node graph


Top: Event node grap; Bottom: Earliest completion time, latest completion time, and slack (additional edge item)

## Chapter 15

## Stacks and Queues



How the stack routines work: empty stack, Push (A), Push (B), Pop


Back
Enqueue(B)

$$
\text { Size }=2
$$



Back
Dequeue( )

$$
\text { Size }=1
$$



Back
Dequeue( )
Size $=0$


Front

After 3 Enqueues Size $=3$


Back
Enqueue(F)
Size $=4$


Back
Dequeue()

$$
\text { Size }=3
$$

| F |  |  | D |
| :--- | :--- | :--- | :--- | :--- |

Front

Back
Dequeue( )

$$
\text { Size }=2
$$



Back
Dequeue()
Size $=1$


Front

## Array implementation of the queue with wraparound



## Linked list implementation of the stack



## Linked list implementation of the queue



## Enqueue operation for linked-list-based implementation

## Chapter 16

## Linked Lists



## Basic linked list



# Insertion into a linked list: create new node (Tmp), copy in X, set Tmp's next pointer, set Current's next pointer 



## Deletion from a linked list



## Using a header node for the linked list



## Empty list when header node is used



## Doubly linked list



## Empty doubly linked list



Insertion into a doubly linked list by getting new node and then changing pointers in order indicated


## Circular doubly linked list

## Chapter 17

Trees


## A tree



## Tree viewed recursively



First child/next sibling representation of tree in Figure 17.1


UNIX directory

```
mark
    books
    dsaa
        ch1
        ch2
    ecp
        ch1
        ch2
    ipps
        ch1
        ch2
    courses
        cop3223
        syl
        cop3530
        syl
    .login
```


## The directory listing for tree in Figure 17.4



## UNIX directory with file sizes

ch1 ..... 9
ch2 ..... 7
dsaa ..... 17
ch1 ..... 4
ch2 ..... 6
ecp ..... 11
ch1 ..... 3
ch2 ..... 8
ipps ..... 12
books ..... 41
syl ..... 2
cop3223 ..... 3
syl ..... 3
cop3530 ..... 4
courses ..... 8
.login ..... 2
mark ..... 52

## Trace of the Size function



Uses of binary trees: left is an expression tree and right is a Huffman coding tree


## Result of a naive Merge operation



## Aliasing problems in the Merge operation; T1 is also the current object



Recursive view used to calculate the size of a tree: $S_{T}=S_{L}$ $+S_{R}+1$


Recursive view of node height calculation: $H_{T}=\operatorname{Max}($ $\left.H_{L}+1, H_{R}+1\right)$


## Preorder, postorder, and inorder visitation routes



## Stack states during postorder traversal

## Chapter 18

Binary Search Trees


## Two binary trees (only the left tree is a search tree)



## Binary search trees before and after inserting 6



## Deletion of node 5 with one child, before and after



Deletion of node 2 with two children, before and after

$K<S_{L}+1$

$K==S_{L}+1$

$K>$,

Using the Size data member to implement FindKth


Balanced tree on the left has a depth of $\log N$; unbalanced tree on the right has a depth of $N-1$


Binary search trees that can result from inserting a permutation 1, 2, and 3; the balanced tree in the middle is twice as likely as any other


Two binary search trees: the left tree is an AVL tree, but the right tree is not (unbalanced nodes are darkened)


Minimum tree of height $H$


## Single rotation to fix case 1



Single rotation fixes AVL tree after insertion of 1


## Symmetric single rotation to fix case 4



## Single rotation does not fix case 2



## Left-right double rotation to fix case 2



## Double rotation fixes AVL tree after insertion of 5



## Left-right double rotation to fix case 3

A red black tree is a binary search tree with the following ordering properties:

1. Every node is colored either red or black.
2. The root is black.
3. If a node is red, its children must be black.
4. Every path from a node to a NULL pointer must contain the same number of black nodes.

## Red black tree properties



Example of a red black tree; insertion sequence is 10,85 , $15,70,20,60,30,50,65,80,90,40,5,55)$


If $S$ is black, then a single rotation between the parent and grandparent, with appropriate color changes, restores property 3 if $X$ is an outside grandchild


If $S$ is black, then a double rotation involving $X$, the parent, and the grandparent, with appropriate color changes, restores property 3 if $X$ is an inside grandchild


If $S$ is red, then a single rotation between the parent and grandparent, with appropriate color changes, restores property 3 between $X$ and $P$


Color flip; only if $X$ 's parent is red do we continue with a rotation


Color flip at 50 induces a violation; because it is outside, a single rotation fixes it


## Result of single rotation that fixes violation at node 50



Insertion of 45 as a red node


Deletion: $X$ has two black children, and both of its sibling's children are black; do a color flip


## Deletion: $X$ has two black children, and the outer child of its sibling is red; do a single rotation



Deletion: $X$ has two black children, and the inner child of its sibling is red; do a double rotation

$X$ is black and at least one child is red; if we fall through to next level and land on a red child, everything is good; if not, we rotate a sibling and parent

The level of a node is

- One if the node is a leaf
- The level of its parent, if the node is red
- One less than the level of its parent, if the node is black

1. Horizontal links are right pointers (because only right children may be red).
2. There may not be two consecutive horizontal links (because there cannot be consecutive red nodes).
3. Nodes at level 2 or higher must have two children.
4. If a node does not have a right horizontal link, then its two children are at the same level.

## AA-tree properties



AA-tree resulting from insertion of $10,85,15,70,20,60$, 30, 50, 65, 80, 90, 40, 5, 55, 35


## Skew is a simple rotation between X and P



Split is a simple rotation between $X$ and $R$; note that R's level increases


After inserting 45 into sample tree; consecutive horizontal links are introduced starting at 35


After Split at 35; introduces a left horizontal link at 50


After Skew at 50; introduces consecutive horizontal nodes starting at 40


After Split at 40;50 is now on the same level as 70, thus inducing an illegal left horizontal link


After Skew at 70; this introduces consecutive horizontal links at 30


After Split at 30; insertion is complete


When 1 is deleted, all nodes become level 1, introducing horizontal left links


Five-ary tree of 31 nodes has only three levels


## B-tree of order 5

A B-tree of order $M$ is an $M$-ary tree with the following properties:

1. The data items are stored at leaves.
2. The nonleaf nodes store up to $M-1$ keys to guide the searching; key $i$ represents the smallest key in subtree $i+1$.
3. The root is either a leaf or has between 2 and $M$ children.
4. All nonleaf nodes (except the root) have between $\lceil M / 2\rceil$ and $M$ children.
5. All leaves are at the same depth and have between $\lceil L / 2\rceil$ and $L$ children, for some $L$.

## B-tree properties



B-tree after insertion of 57 into tree in Figure 18.70


Insertion of 55 in B-tree in Figure 18.71 causes a split into two leaves


Insertion of 40 in B-tree in Figure 18.72 causes a split into two leaves and then a split of the parent node


## B-tree after deletion of 99 from Figure 18.73

## Chapter 19

## Hash Tables

$\operatorname{Hash}(89,10)=8$
$\operatorname{Hash}(18,10)=8$
$\operatorname{Hash}(49,10)=9$
$\operatorname{Hash}(58,10)=8$
$\operatorname{Hash}(9,10)=9$

After Insert 89 After Insert 18 After Insert 49 After Insert 58 A

| 0 |  |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 | 89 |



| 49 |
| :---: |
| 58 |
|  |
|  |
|  |
|  |
|  |
| 18 |
| 89 |

Linear probing hash table after each insertion

$$
\begin{aligned}
& \operatorname{Hash}(89,10)=8 \\
& \operatorname{Hash}(18,10)=8 \\
& \operatorname{Hash}(49,10)=9 \\
& \operatorname{Hash}(58,10)=8 \\
& \operatorname{Hash}(9,10)=9
\end{aligned}
$$

After Insert 89 After Insert 18 After Insert 49 After Insert 58

| 0 |  |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 | 89 |



| 49 |
| :---: |
|  |
| 58 |
|  |
|  |
|  |
|  |
| 18 |
| 89 |

Quadratic probing hash table after each insertion (note that the table size is poorly chosen because it is not a prime number)

## Chapter 20

## A Priority Queue: The Binary Heap



|  | A | B | C | D | E | F | G | H | I | J |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

## A complete binary tree and its array representation



## Heap order property



## Two complete trees (only the left tree is a heap)



## Attempt to insert 14, creating the hole and bubbling the hole up



The remaining two steps to insert 14 in previous heap


## Creation of the hole at the root



Next two steps in DeleteMin


Last two steps in DeleteMin


Recursive view of the heap


Initial heap (left); after PercolateDown (7) (right)


After PercolateDown (6) (left); after PercolateDown (5) (right)


After PercolateDown (4) (left); after PercolateDown (3) (right)


After PercolateDown (2) (left); after PercolateDown (1) and FixHeap terminates (right)


Marking of left edges for height one nodes


Marking of first left and subsequent right edge for height two nodes


Marking of first left and subsequent two right edges for height three nodes


Marking of first left and subsequent right edges for height 4 node


| 97 | 53 | 59 | 26 | 41 | 58 | 31 | 16 | 21 | 36 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |

(Max) Heap after FixHeap phase

1. Toss each item into a binary heap.
2. Apply FixHeap.
3. Call DeleteMin $N$ times; the items will exit the heap in sorted order.

## Heapsort algorithm



| 59 | 53 | 58 | 26 | 41 | 36 | 31 | 16 | 21 | 97 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

## Heap after first DeleteMax



| 58 | 53 | 36 | 26 | 41 | 21 | 31 | 16 | 59 | 97 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Heap after second DeleteMax

| A1 | 81 | 94 | 11 | 96 | 12 | 35 | 17 | 99 | 28 | 58 | 41 | 75 | 15 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| B1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| B2 |  |  |  |  |  |  |  |  |  |  |  |  |  |

Initial tape configuration

| A1 |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A2 |  |  |  |  |  |  |  |  |
| B1 | 11 | 81 | 94 | 17 | 28 | 99 | 15 |  |
| B2 | 12 | 35 | 96 | 41 | 58 | 75 |  |  |

Distribution of length 3 runs onto two tapes

| A1 | 11 | 12 | 35 | 81 | 94 | 96 | 15 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A2 | 17 | 28 | 41 | 58 | 75 | 99 |  |  |
| B1 |  |  |  |  |  |  |  |  |
| B2 |  |  |  |  |  |  |  |  |

Tapes after first round of merging (run length = 6)


Tapes after second round of merging (run length = 12)

| A1 | 11 | 12 | 15 | 17 | 28 | 35 | 41 | 58 | 75 | 81 | 94 | 96 | 99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| B1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| B2 |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Tapes after third round of merging

| A1 |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A2 |  |  |  |  |  |  |  |
| A3 |  |  |  |  |  |  |  |
| B1 | 11 | 81 | 94 | 41 | 58 | 75 |  |
| B2 | 12 | 35 | 96 | 15 |  |  |  |
| B3 | 17 | 28 | 99 |  |  |  |  |

Initial distribution of length 3 runs onto three tapes

| A1 | 11 | 12 | 17 | 28 | 35 | 81 | 94 | 96 | 99 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A2 | 15 | 41 | 58 | 75 |  |  |  |  |  |  |
| A3 |  |  |  |  |  |  |  |  |  |  |
| B1 |  |  |  |  |  |  |  |  |  |  |
| B2 |  |  |  |  |  |  |  |  |  |  |
| B3 |  |  |  |  |  |  |  |  |  |  |

After one round of three-way merging (run length = 9)

| A1 | 11 | 12 | 15 |  |  |  |  |  |  | 81 | 94 | 96 | 99 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| A3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| B1 |  |  |  | 17 | 28 | 35 | 41 | 58 | 75 |  |  |  |  |
| B2 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| B3 |  |  |  |  |  |  |  |  |  |  |  |  |  |

After two rounds of three-way merging

|  | Run | After |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Const. | T3+T2 | T1+T2 | T1+T3 | T2+T3 | T1+T2 | T1+T3 | T2+T3 |  |
|  |  |  |  |  |  |  |  |  |  |
| T1 | 0 | 13 | 5 | 0 | 3 | 1 | 0 | 1 |  |
| T2 | 21 | 8 | 0 | 5 | 2 | 0 | 1 | 0 |  |
| T3 | 13 | 0 | 8 | 3 | 0 | 2 | 1 | 0 |  |

Number of runs using polyphase merge

| Run 1 | 3 Elements in Heap Array |  | Output | Next Item <br> Read |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Array[1] | Array[2] | Array[3] |  | 96 |
|  | 11 | 94 | 81 | 11 |  |
|  | 81 | 94 | 96 | 81 | 12 |
|  | 94 | 96 | 12 | 94 | 35 |
|  | 96 | 35 | 12 | 96 | 17 |
|  | 17 | 35 | 12 | End of Run | Rebuild Heap |
|  | 12 | 35 | 17 | 12 | 99 |
|  | 17 | 35 | 99 | 17 | 28 |
|  | 28 | 99 | 35 | 28 | 58 |
|  | 35 | 99 | 58 | 35 | 41 |
|  | 41 | 99 | 58 | 41 | 75 |
|  | 58 | 99 | 75 | 58 | End of Tape |
|  | 99 |  | 75 | 99 |  |
| Run 3 | 75 |  | 75 | End of Run | Rebuild Heap |

## Example of run construction

## Chapter 21

## Splay Trees



Rotate-to-root strategy applied when node 3 is accessed


## Insertion of 4 using rotate-to-root



## Sequential access of items takes quadratic time



Zig case (normal single rotation)


Zig-zag case (same as a double rotation); symmetric case omitted


Zig-zig case (this is unique to the splay tree); symmetric case omitted


Result of splaying at node 1 (three zig-zigs and a zig)


The Remove operation applied to node 6: First 6 is splayed to the root, leaving two subtrees; a FindMax on the left subtree is performed, raising 5 to the root of the left subtree; then the right subtree can be attached (not shown)


Top-down splay rotations: zig (top), zig-zig (middle), and zig-zag (bottom)


Simplified top-down zig-zag


Final arrangement for top-down splaying





24
20
(24)


Steps in top-down splay (accessing 19 in top tree)

## Chapter 22

Merging Priority Queues


## Simplistic merging of heap-ordered trees; right paths are merged



Merging of skew heap; right paths are merged, and the result is made a left path

A recursive viewpoint is as follows: Let $S$ be the tree with the smaller root, and let $R$ be the other tree.

1. If one tree is empty, the other can be used as the merged result.
2. Otherwise, let Temp be the right subtree of $L$.
3. Make $L$ 's left subtree its new right subtree.
4. Make the result of the recursive merge of Temp and $R$ the new left subtree of $L$.

## Skew heap algorithm (recursive viewpoint)



## Change in heavy/light status after a merge



## Abstract representation of sample pairing heap



Actual representation of above pairing heap; dark line represents a pair of pointers that connect nodes in both directions


Recombination of siblings after a DeleteMin; in each merge the larger root tree is made the left child of the smaller root tree: (a) the resulting trees; (b) after the first pass; (c) after the first merge of the second pass; (d) after the second merge of the second pass


CompareAndLink merges two trees

## Chapter 23

The Disjoint Set Class

A relation $R$ is defined on a set $S$ if for every pair of elements ), $a, b \in S, a R b$ is either true or false. If $a R b$ is true, then we say that $a$ is related to $b$. An equivalence relation is a relation $R$ that satisfies three properties:

- Reflexive: $a R a$ is true for all $a \in S$
- Symmetric: $a R b$ if and only if $b R a$
- Transitive: $a R b$ and $b R c$ implies that $a R c$


## Definition of equivalence relation



A graph $G$ (left) and its minimum spanning tree

$V_{4}$


Kruskal's algorithm after each edge is considered


The nearest common ancestor for each request in the pair sequence $(x, y),(u, z),(w, x),(z, w),(w, y)$, is $A, C, A, B$, and $y$, respectively


The sets immediately prior to the return from the recursive call to $D ; D$ is marked as visited and $\operatorname{NCA}(D, v)$ is $v$ 's anchor to the current path


After the recursive call from $D$ returns, we merge the set anchored by $D$ into the set anchored by $C$ and then compute all $\operatorname{NCA}(C, v)$ for nodes $v$ that are marked prior to completing $C$ 's recursive call
0
(1)
(2)
(3)
(4)
(5)
(6)
(7)

## Forest and its eight elements, initially in different sets

(0)

(2)
(3)
(4)
(6)
(7)

Forest after Union of trees with roots 4 and 5
(0)
(1)
(2)
(3)

(6)
(7)

Forest after Union of trees with roots 6 and 7
(0) (1) (2)


Forest after Union of trees with roots 4 and 6


Forest formed by union-by-size, with size encoded as a negative number


## Worst-case tree for $N=16$



Forest formed by union-by-height, with height encoded as a negative number


Path compression resulting from a Find(14) on the tree in Figure 23.12

Ackerman's function is defined as:

| $A($ | $)$ | $=2^{j}$ |  |
| :--- | :--- | ---: | :--- |
| $A(\quad)$ |  | $j \geq 1$ |  |
| $A($ | $)$ | $i \geq 2$ |  |
| $A($ | $)$ | $=A($ |  |

From this, we define the inverse Ackerman's function as
$\alpha($

$$
)=\min \{
$$

$\square$
$\square$ \}

## Ackerman's function and its inverse

To incorporate path compression into the proof, we use the following fancy accounting: For each node $v$ on the path from the accessed node $i$ to the root, we deposit one penny under one of two accounts:

1. If $v$ is the root, or if the parent of $v$ is the root, or if the parent of $v$ is in a different rank group from $v$, then charge one unit under this rule. This deposits an American penny into the kitty.
2. Otherwise, deposit a Canadian penny into the node.

## Accounting used in union-find proof

| Group | Rank |
| :---: | :---: |
| 0 | 0 |
| 1 | 1 |
| 2 | 2 |
| 3 | 3,4 |
| 4 | 5 through 16 |
| 5 | 17 through 65536 |
| 6 | 6553 through 265536 |
| 7 | Truly huge ranks |

Actual partitioning of ranks into groups used in the unionfind proof

## List of Transparencies

## Chapter 1 Pointers, Arrays, and Structures 1

Pointer illustration 2
Result of *Ptr=10 $\mathbf{3}$
Uninitialized pointer 4
(a) Initial state; (b) Ptr1=Ptr2 starting from initial state; (c) *Ptr1=*Ptr2 starting from initial state 5
Memory model for arrays (assumes 4 byte int); declaration is int A[3]; int i; 6
Some of the string routines in <string.h> 7
Two ways to allocate arrays; one leaks memory $\mathbf{8}$
Memory reclamation 9
Array expansion: (a) starting point: A2 points at 10 integers; (b) after step 1: Original points at the 10 integers; (c) after steps 2 and 3: A2 points at 12 integers, the first 10 of which are copied from Original; (d) after step 4: the 10 integers are freed $\mathbf{1 0}$
Pointer arithmetic: $\mathrm{X}=\& \mathrm{~A}[3]$; $\mathrm{Y}=\mathrm{X}+4 \quad \mathbf{1 1}$
First eight lines from prof for program 12
First eight lines from prof with highest optimization 12
Student structure 13
Illustration of a shallow copy in which only pointers are copied 14
Illustration of a simple linked list $\mathbf{1 5}$

## Chapter $2 \quad$ Objects and Classes 16

A complete declaration of a MemoryCell class $\mathbf{1 7}$
MemoryCell members: Read and Write are accessible, but StoredValue is hidden 18
A simple test routine to show how MemoryCell objects are accessed 19
A more typical MemoryCell declaration in which interface and implementation are separated 20
Interface for BitArray class 21

## BitArray members <br> 22

Construction examples ..... 23
Chapter 3 Templates ..... 24
Basic action of insertion sort (shaded part is sorted) ..... 25
Closer look at action of insertion sort (dark shading indicates sorted area; light shading is wherenew element was placed) 26
Typical layout for template interface and member functions ..... 27
Chapter 4 Inheritance ..... 28
General layout of public inheritance ..... 29
Access rules that depend on what $M$ 's visibility is in the base class ..... 30
Friendship is not inherited ..... 31
Vector and BoundedVector classes with calls to operator [ ] that are done automaticallyand correctly 32
Vector and BoundedVector classes ..... 33
The hierarchy of shapes used in an inheritance example ..... 34
Summary of nonvirtual, virtual, and pure virtual functions ..... 35
Programmer responsibilities for derived class ..... 36
Chapter $5 \quad$ Algorithm Analysis ..... 37
Running times for small inputs ..... 38
Running time for moderate inputs ..... 39
Functions in order of increasing growth rate ..... 40
The subsequences used in Theorem 5.2 41
The subsequences used in Theorem 5.3. The sequence from $p$ to $q$ has sum at most that of the sub-sequence from $i$ to $q$. On the left, the sequence from $i$ to $q$ is itself not the maximum (byTheorem 5.2). On the right, the sequence from $i$ to $q$ has already been seen. 42
Meanings of the various growth functions ..... 44
Observed running times (in seconds) for various maximum contiguous subsequence sum algo-rithms 45
Empirical running time for $N$ binary searches in an $N$-item array ..... 46
Chapter 6 Data Structures ..... 47
Sample stack program; output isContents: 4321048
Stack model: input to a stack is by Push, output is by Top, deletion is by Pop ..... 49
Sample queue program; output is
Contents:0 1234 ..... 50

Queue model: input is by Enqueue, output is by Front, deletion is by Dequeue $\mathbf{5 1}$ Sample list program; output is Contents: 43210 end 52
Link list model: inputs are arbitrary and ordered, any item may be output, and iteration is support-
ed, but this data structure is not time-efficient $\mathbf{5 3}$
A simple linked list 54
A tree 55
Expression tree for $(a+b)$ * $(c-d) 56$
Sample search tree program;
output is Found Becky; Mark not found; 57
Binary search tree model; the binary search is extended to allow insertions and deletions $\mathbf{5 8}$
Sample hash table program;
output is Found Becky; Mark not found; 59
The hash table model: any named item can be accessed or deleted in essentially constant time $\mathbf{6 0}$ Sample program for priority queues;
output is Contents: $\begin{array}{llllll}1 & 2 & 3 & 4 & 61\end{array}$
Priority queue model: only the minimum element is accessible $\mathbf{6 2}$
Summary of some data structures 63

Chapter 7 Recursion 64
Stack of activation records 65
Trace of the recursive calculation of the Fibonacci numbers 66
Divide-and-conquer algorithms 67
Dividing the maximum contiguous subsequence problem into halves 68
Trace of recursive calls for recursive maximum contiguous subsequence sum algorithm 69
Basic divide-and-conquer running time theorem 70
General divide-and-conquer running time theorem 71
Some of the subproblems that are solved recursively in Figure 7.1572
Alternative recursive algorithm for coin-changing problem 73

## Chapter $8 \quad$ Sorting Algorithms 74

Examples of sorting 75
Deriving the relational and equality operators from operator< 76
Shellsort after each pass, if increment sequence is $\{1,3,5\} 77$
Running time (milliseconds) of the insertion sort and Shellsort with various increment sequences 78
Linear-time merging of sorted arrays (first four steps) 79
Linear-time merging of sorted arrays (last four steps) $\mathbf{8 0}$
Basic quicksort algorithm 81
The steps of quicksort 82
Correctness of quicksort 83
Partitioning algorithm: pivot element 6 is placed at the end 84
Partitioning algorithm: i stops at large element 8 ; j stops at small element 284
Partitioning algorithm: out-of-order elements 8 and 2 are swapped 84
Partitioning algorithm: i stops at large element 9; j stops at small element $5 \mathbf{8 4}$
Partitioning algorithm: out-of-order elements 9 and 5 are swapped 84
Partitioning algorithm: i stops at large element 9; j stops at small element $3 \mathbf{8 4}$
Partitioning algorithm: swap pivot and element in position i $\mathbf{8 4}$

## Original array 85

Result of sorting three elements (first, middle, and last) $\mathbf{8 5}$
Result of swapping the pivot with next to last element $\mathbf{8 5}$
Median-of-three partitioning optimizations 86
Quickselect algorithm 87
Using an array of pointers to sort $\mathbf{8 8}$
Data structure used for in-place rearrangement $\mathbf{8 9}$

## Chapter 9 Randomization 90

Distribution of lottery winners if expected number of winners is $2 \mathbf{9 1}$
Poisson distribution 92

## Chapter 10 Fun and Games 93

Sample word search grid 94
Brute-force algorithm for word search puzzle 95
Alternate algorithm for word search puzzle 96
Improved algorithm for word search puzzle; incorporates a prefix test 97
Basic minimax algorithm 98
Alpha-beta pruning: After H2A is evaluated, C2, which is the minimum of the H2's, is at best a draw. Consequently, it cannot be an improvement over C 1 . We therefore do not need to evaluate H2B, H2C, and H2D, and can proceed directly to C3 99
Two searches that arrive at identical positions $\mathbf{1 0 0}$

## Chapter 11 Stacks and Compilers 101

Stack operations in balanced symbol algorithm 102
Steps in evaluation of a postfix expression 103
Associativity rules $\mathbf{1 0 4}$
Various cases in operator precedence parsing 105
Infix to postfix conversion 106
Expression tree for $(a+b)$ * $(c-d) \quad 107$

## Chapter $12 \quad$ Utilities 108

A standard coding scheme 109
Representation of the original code by a tree $\mathbf{1 1 0}$
A slightly better tree $\mathbf{1 1 1}$
Optimal prefix code tree $\mathbf{1 1 2}$
Optimal prefix code 113
Huffman's algorithm after each of first three merges 114
Huffman's algorithm after each of last three merges 115
Encoding table (numbers on left are array indices) 116
IdNode data members: Word is a String; Lines is a pointer to a Queue $\mathbf{1 1 7}$
The object in the tree is a copy of the temporary; after the insertion is complete, the destructor is
called for the temporary $\mathbf{1 1 8}$

Chapter 13 Simulation 119
The Josephus problem $\mathbf{1 2 0}$
Sample output for the modem bank simulation: 3 modems; a dial in is attempted every minute; average connect time is 5 minutes; simulation is run for 19 minutes $\mathbf{1 2 1}$
Steps in the simulation $\mathbf{1 2 2}$
Priority queue for modem bank after each step $\mathbf{1 2 3}$

## Chapter 14 Graphs and Paths 124

## A directed graph 125

Adjacency list representation of graph in Figure 14.1; nodes in list $i$ represent vertices adjacent to $i$ and the cost of the connecting edge $\mathbf{1 2 6}$
Information maintained by the Graph table 127
Data structures used in a shortest path calculation, with input graph taken from a file: shortest weighted path from A to C is: A to B to E to D to C ( $\operatorname{cost} 76$ ) $\mathbf{1 2 8}$
Graph after marking the start node as reachable in zero edges $\mathbf{1 2 9}$
Graph after finding all vertices whose path length from the start is $1 \mathbf{1 3 0}$
Graph after finding all vertices whose shortest path from the start is $2 \mathbf{1 3 1}$
Final shortest paths $\mathbf{1 3 2}$
How the graph is searched in unweighted shortest path computation 133
Eyeball is at $v ; w$ is adjacent; $D w$ should be lowered to $6 \mathbf{1 3 4}$
If $D v$ is minimal among all unseen vertices and all edge costs are nonnegative, then it represents the shortest path $\mathbf{1 3 5}$
Stages of Dijkstra's algorithm 136
Graph with negative cost cycle 137
Topological sort 138
Stages of acyclic graph algorithm 139
Activity-node graph 140
Top: Event node grap; Bottom: Earliest completion time, latest completion time, and slack (additional edge item) 141

Chapter 15 Stacks and Queues 142
How the stack routines work: empty stack, Push (A), Push (B), Pop 143
Basic array implementation of the queue $\mathbf{1 4 4}$
Array implementation of the queue with wraparound 145
Linked list implementation of the stack $\mathbf{1 4 6}$
Linked list implementation of the queue 147
Enqueue operation for linked-list-based implementation $\mathbf{1 4 8}$

Chapter 16 Linked Lists 149
Basic linked list $\mathbf{1 5 0}$
Insertion into a linked list: create new node (Tmp), copy in X, set Tmp's next pointer, set Current's next pointer 151
Deletion from a linked list 152
Using a header node for the linked list 153
Empty list when header node is used $\mathbf{1 5 4}$
Doubly linked list 155
Empty doubly linked list $\mathbf{1 5 6}$
Insertion into a doubly linked list by getting new node and then changing pointers in order indicated 157

Circular doubly linked list $\mathbf{1 5 8}$

## Chapter 17 Trees 159

A tree 160
Tree viewed recursively $\mathbf{1 6 1}$
First child/next sibling representation of tree in Figure 17.1 162
UNIX directory 163
The directory listing for tree in Figure $17.4 \mathbf{1 6 4}$
UNIX directory with file sizes $\mathbf{1 6 5}$
Trace of the Size function $\mathbf{1 6 6}$
Uses of binary trees: left is an expression tree and right is a Huffman coding tree 167
Result of a naive Merge operation $\mathbf{1 6 8}$
Aliasing problems in the Merge operation; T1 is also the current object $\mathbf{1 6 9}$
Recursive view used to calculate the size of a tree: $S T=S L+S R+1 \quad \mathbf{1 7 0}$
Recursive view of node height calculation: $H T=\operatorname{Max}(H L+1, H R+1) 171$
Preorder, postorder, and inorder visitation routes 172
Stack states during postorder traversal 173

## Chapter 18 Binary Search Trees 174

Two binary trees (only the left tree is a search tree) 175
Binary search trees before and after inserting $6 \mathbf{1 7 6}$
Deletion of node 5 with one child, before and after 177
Deletion of node 2 with two children, before and after 178
Using the Size data member to implement FindKth 179
Balanced tree on the left has a depth of $\log N$; unbalanced tree on the right has a depth of $N-1 \mathbf{1 8 0}$
Binary search trees that can result from inserting a permutation 1, 2, and 3; the balanced tree in the middle is twice as likely as any other 181
Two binary search trees: the left tree is an AVL tree, but the right tree is not (unbalanced nodes are darkened) 182
Minimum tree of height $H \mathbf{1 8 3}$
Single rotation to fix case $1 \quad \mathbf{1 8 4}$
Single rotation fixes AVL tree after insertion of $1 \mathbf{1 8 5}$
Symmetric single rotation to fix case $4 \mathbf{1 8 6}$
Single rotation does not fix case $2 \quad \mathbf{1 8 7}$
Left-right double rotation to fix case $2 \mathbf{1 8 8}$

Double rotation fixes AVL tree after insertion of $5 \mathbf{1 8 9}$
Left-right double rotation to fix case $3 \mathbf{1 9 0}$
Red black tree properties 191
Example of a red black tree; insertion sequence is $10,85,15,70,20,60,30,50,65,80,90,40,5$, 55) 192

If $S$ is black, then a single rotation between the parent and grandparent, with appropriate color changes, restores property 3 if $X$ is an outside grandchild 193
If $S$ is black, then a double rotation involving $X$, the parent, and the grandparent, with appropriate color changes, restores property 3 if $X$ is an inside grandchild 194
If $S$ is red, then a single rotation between the parent and grandparent, with appropriate color changes, restores property 3 between $X$ and $P \mathbf{1 9 5}$
Color flip; only if $X$ 's parent is red do we continue with a rotation 196
Color flip at 50 induces a violation; because it is outside, a single rotation fixes it 197
Result of single rotation that fixes violation at node 50198
Insertion of 45 as a red node $\mathbf{1 9 9}$
Deletion: $X$ has two black children, and both of its sibling's children are black; do a color flip 200
Deletion: $X$ has two black children, and the outer child of its sibling is red; do a single rotation 201
Deletion: $X$ has two black children, and the inner child of its sibling is red; do a double rotation 202
$X$ is black and at least one child is red; if we fall through to next level and land on a red child, everything is good; if not, we rotate a sibling and parent 203
AA-tree properties 204
AA-tree resulting from insertion of $10,85,15,70,20,60,30,50,65,80,90,40,5,55,35205$
Skew is a simple rotation between $X$ and $P \quad 206$
Split is a simple rotation between $X$ and $R$; note that R's level increases $\mathbf{2 0 7}$
After inserting 45 into sample tree; consecutive horizontal links are introduced starting at $35 \mathbf{2 0 8}$
After Split at 35; introduces a left horizontal link at 50208
After Skew at 50; introduces consecutive horizontal nodes starting at $40 \quad 208$
After Split at 40; 50 is now on the same level as 70, thus inducing an illegal left horizontal link 209
After Skew at 70; this introduces consecutive horizontal links at 30209
After Split at 30; insertion is complete 209
When 1 is deleted, all nodes become level 1 , introducing horizontal left links 210
Five-ary tree of 31 nodes has only three levels 211
B-tree of order $5 \mathbf{2 1 2}$
B-tree properties 213
B-tree after insertion of 57 into tree in Figure 18.70214
Insertion of 55 in B-tree in Figure 18.71 causes a split into two leaves 215
Insertion of 40 in B-tree in Figure 18.72 causes a split into two leaves and then a split of the parent node 216
B-tree after deletion of 99 from Figure 18.73217

## Chapter 19 Hash Tables 218

Linear probing hash table after each insertion 219
Quadratic probing hash table after each insertion (note that the table size is poorly chosen because it is not a prime number) $\mathbf{2 2 0}$
Chapter 20 A Priority Queue: The Binary Heap ..... 221
A complete binary tree and its array representation ..... 222
Heap order property ..... 223
Two complete trees (only the left tree is a heap) ..... 224
Attempt to insert 14, creating the hole and bubbling the hole up ..... 225
The remaining two steps to insert 14 in previous heap ..... 226
Creation of the hole at the root ..... 227
Next two steps in DeleteMin ..... 228
Last two steps in DeleteMin ..... 229
Recursive view of the heap ..... 230
Initial heap (left); after PercolateDown (7) (right) ..... 231
After PercolateDown (6) (left); after PercolateDown (5) (right) ..... 231
After PercolateDown (4) (left); after PercolateDown (3) (right) 232After PercolateDown (2) (left); after PercolateDown (1) and FixHeap terminates (right)232
Marking of left edges for height one nodes ..... 233
Marking of first left and subsequent right edge for height two nodes ..... 233
Marking of first left and subsequent two right edges for height three nodes ..... 234
Marking of first left and subsequent right edges for height 4 node ..... 234
(Max) Heap after FixHeap phase ..... 235
Heapsort algorithm ..... 236
Heap after first DeleteMax ..... 237
Heap after second DeleteMax ..... 237
Initial tape configuration ..... 238
Distribution of length 3 runs onto two tapes ..... 239
Tapes after first round of merging (run length $=6$ ) ..... 239
Tapes after second round of merging (run length = 12) ..... 239
Tapes after third round of merging ..... 239
Initial distribution of length 3 runs onto three tapes ..... 240
After one round of three-way merging (run length $=9$ ) ..... 240
After two rounds of three-way merging ..... 240
Number of runs using polyphase merge ..... 241
Example of run construction ..... 242
Chapter $21 \quad$ Splay Trees ..... 243
Rotate-to-root strategy applied when node 3 is accessed ..... 244
Insertion of 4 using rotate-to-root ..... 245
Sequential access of items takes quadratic time ..... 246
Zig case (normal single rotation) ..... 247
Zig-zag case (same as a double rotation); symmetric case omitted ..... 247
Zig-zig case (this is unique to the splay tree); symmetric case omitted ..... 247
Result of splaying at node 1 (three zig-zigs and a zig) 248
The Remove operation applied to node 6: First 6 is splayed to the root, leaving two subtrees; aFindMax on the left subtree is performed, raising 5 to the root of the left subtree; then theright subtree can be attached (not shown) 249

Top-down splay rotations: zig (top), zig-zig (middle), and zig-zag (bottom) 250
Simplified top-down zig-zag $\mathbf{2 5 1}$
Final arrangement for top-down splaying 252
Steps in top-down splay (accessing 19 in top tree) $\mathbf{2 5 3}$

## Chapter 22 Merging Priority Queues 254

Simplistic merging of heap-ordered trees; right paths are merged 255
Merging of skew heap; right paths are merged, and the result is made a left path $\mathbf{2 5 6}$
Skew heap algorithm (recursive viewpoint) 257
Change in heavy/light status after a merge 258
Abstract representation of sample pairing heap 259
Actual representation of above pairing heap; dark line represents a pair of pointers that connect nodes in both directions 259
Recombination of siblings after a DeleteMin; in each merge the larger root tree is made the left child of the smaller root tree: (a) the resulting trees; (b) after the first pass; (c) after the first merge of the second pass; (d) after the second merge of the second pass 260
CompareAndLink merges two trees 261

## Chapter 23 The Disjoint Set Class 262

Definition of equivalence relation 263
A graph $G$ (left) and its minimum spanning tree $\mathbf{2 6 4}$
Kruskal's algorithm after each edge is considered 265
The nearest common ancestor for each request in the pair sequence $(x, y),(u, z),(w, x),(z, w),(w, y)$, is $A, C, A, B$, and $y$, respectively $\mathbf{2 6 6}$
The sets immediately prior to the return from the recursive call to $D ; D$ is marked as visited and $N C A(D, v)$ is $v$ 's anchor to the current path 267
After the recursive call from $D$ returns, we merge the set anchored by $D$ into the set anchored by $C$ and then compute all $N C A(C, v)$ for nodes $v$ that are marked prior to completing $C^{\prime}$ s recursive call 268
Forest and its eight elements, initially in different sets 269
Forest after Union of trees with roots 4 and $5 \mathbf{2 6 9}$
Forest after Union of trees with roots 6 and $7 \mathbf{2 7 0}$
Forest after Union of trees with roots 4 and $6 \mathbf{2 7 0}$
Forest formed by union-by-size, with size encoded as a negative number 271
Worst-case tree for $\mathrm{N}=16 \quad 272$
Forest formed by union-by-height, with height encoded as a negative number 273
Path compression resulting from a Find(14) on the tree in Figure 23.12274
Ackerman's function and its inverse 275
Accounting used in union-find proof 276
Actual partitioning of ranks into groups used in the union-find proof 277

