Copyright] 1996 by Addison-Wesley Publishing Company

Chapter 1

Pointers, Arrays, and Structures
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Pointer illustration
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(&X) 1000
(&Y) 1004

(&Ptr) 1200

X=10

Ptr = &X = 1000

Result of *Ptr=10

Ptr

10
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(&X) 1000 | X=5

(&Y) 1004 [ Y =7

Ptr

(&Ptr) 1200 [ Ptr =2

Uninitialized pointer
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———» 5 —

Ptrl X Ptr1 X Ptrl

] » 7 ] 7 —

Ptr2 Y Ptr2 Y Ptr2
(@) (b)

(a) Initial state; (b) Ptr1=Ptr2 starting from initial state;
(c) *Ptr1=*Ptr2 starting from initial state
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&A[0] (1000) A[O]

&A[1] (1004) Al1]

&A[2] (1008) Al2]
& (1012) i

&A (5620) A=1000

Memory model for arrays (assumes 4 byte int ); declara-
tionis Int A[3]; int 1,
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1 size_t strlen( const char *Str);

2 char * strepy( char *Lhs, const char *Rhs );
3 char * strcat( char *Lhs, const char *Rhs );

4 int strcmp( const char *Lhs, const char *Rhs );

Some of the string routines in <string.h>
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1 void

2 F(inti)

3

int A1[ 10 J;

int *A2 = new int [ 10 |;

4
5
6
7 ..
8 G(Al);

9 G(A2);

10

11 // Onreturn, all memory associated with Al is freed
12 // Onreturn, only the pointer A2 is freed,

13 /[ 10 ints have leaked

14 [/ delete [] A2; /I This would fix the leak

15 }

Two ways to allocate arrays; one leaks memory
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int *Original = A2;  // 1. Save pointer to the original

A2 =newint[12]; // 2. Have A2 point at more memory

for(inti=0;i<10; i++)// 3. Copy the old data over
A2[i]=Original[i];

delete [ ] Original; // 4. Recycle the original array

Memory reclamation
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(c)
Original [ _}+—"]

(d)
Original —

Array expansion: (a) starting point: A2 points at 10 inte-
gers; (b) after step 1: Original  points at the 10 inte-
gers; (c) after steps 2 and 3: A2 points at 12 integers, the

first 10 of which are copied from Original ; (d) after step
4: the 10 integers are freed
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A Ptr X Y

Eivd

A[O] A[1] A[2] A[3] A[4] A[S] Al6] A[7] A[8] A[9]

Pointer arithmetic: X=&A[3]; Y=X+4
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1 /] Test that Strlen1 and Strlen2 give same answer
2 /I Source file is ShowProf.cpp

3

4 #include <iostream.h>

5

6 main()

7{

8 char Str[ 512 ];

9

10  while( cin >> Str)

11 |

12 if( Strlen1( Str) != Strlen2( Str) )
13 cerr << "Oops!!!!" << endl;
14 }

15

16  return O;

17 }

%time cumsecs #call ms/call name

26.6
22.7
14.8
12.5

8.6
6.2
4.7
3.1

0.34 25145 0.01 __ rs_ 7istreamFPc
0.63 25144 0.01 _Strlen2__FPCc

0.82 mcount

0.98 25144 0.01 _Strlenl__FPCc

1.09 25145 0.00 _do_ipfx__7istreamFi
1.17 25145 0.00 _eatwhite__ 7istreamFv
1.23 204 0.29 _read

1.27 1 40.00 _main

First eight lines from prof for program

%time cumsecs #call ms/call name

344 0.31 mcount

26.7 0.55 25145 0.01 __ rs_ 7istreamFPc
8.9 0.63 25145 0.00 _do_ipfx__7istreamFi
6.7 0.69 25144 0.00 _Strlenl__FPCc

6.7 0.75 25144 0.00 _Strlen2__FPCc

6.7 0.81 25145 0.00 _eatwhite__7istreamFv
6.7 0.87 204 0.29 _read

33 090 1 30.00 main

First eight lines from prof with highest optimization

12
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struct Student

{
char FirstName[ 40 |;
char LastName[ 40 J;
int StudentNum;
double GradePointAvg;

:_ FirstName
[___________[agtﬁa_mg """"""""
L StudentNum |

[ ~ GradePointAvg |

Student structure

13
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|lNinall

/\

FirstName

LastName

12345

EmployeeNum

12345

T~

"Weiss"

14

lllustration of a shallow copy in which only pointers are cop-

led
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A2

First

lllustration of a simple linked list

15
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Chapter 2

Objects and Classes

16
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1 // MemoryCell class

2 /I int Read() --> Returns the stored value
3 /I void Write( int X ) --> X is stored

4

5 class MemoryCell

6 {

7 public:

8 // Public member functions

9 intRead() { return StoredValue; }
10  void Write(int X) { StoredValue = X; }
11 private:

12 // Private internal data representation
13 int StoredValue;

14 }

A complete declaration of a MemoryCell

class

17
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I Read -: |r Write -: Stored

MemoryCell members: Read and Write are acces-
sible, but StoredValue s hidden
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/I Exercise the MemoryCell class

M.Write( 5);
cout << "Cell contents are " << M.Read( ) << '\n’;
I/l The next line would be illegal if uncommented
10 /I cout << "Cell contents are " << M.StoredValue << '\n’;
11 return O;
12 }

1

2

3

4

5  MemoryCell M;
6

7

8

9

A simple test routine to show how MemoryCell
are accessed

19

objects
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1 /I MemoryCell interface

2 /I int Read() --> Returns the stored value
3 /I void Write( int X ) --> X is stored
4

5 class MemoryCell

6 {

7 public:

8 intRead();

9  void Write( int X);

10 private:

11 int StoredValue;

12 }

13

14

15

16 // Implementation of the MemoryCell class members
17

18 int

19 MemoryCell::Read()

20 {

21 return StoredValue;

22 }

23

24 void

25 MemoryCell::Write( int X))

26 {

27  StoredValue = X;

28 }

A more typical MemoryCell declaration in which inter-
face and implementation are separated
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17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

/I BitArray class: support access to an array of bits

1

/[ CONSTRUCTION: with (a) no initializer or (b) an integer
/I that specifies the number of bits

/I All copying of BitArray objects is DISALLOWED

1

// ******************P U B L I C O P E RATI O N S***********'k*'k********
// void ClearAllBits() --> Set all bits to zero

/[ void SetBit(inti) -->Turn bition

/[ void ClearBit( int i) --> Turn bit i off

/l'int GetBit(inti) --> Return status of bit i

/[ int Numltems( ) --> Return capacity of bit array

#include <iostream.h>

class BitArray

{
public:
/I Constructor
BitArray( int Size = 320 ); /I Basic constructor
// Destructor
~BitArray( ) { delete [ ] TheArray; }
/ Member Functions
void ClearAllBits( );
void SetBit( inti);
void ClearBit( inti);
int GetBit( inti) const;
int Numltems() const { return N; }
private:
/I 3 data members
int *TheArray; I/l The bit array
int N; // Number of bits
int ArraySize; /I Size of the array
enum { IntSz = sizeof(int) * 8 }
int IsinRange( int i ) const;// Check range with error msg
// Disable operator= and copy constructor
const BitArray & operator=( const BitArray & Rhs);
BitArray( const BitArray & Rhs));
I3

Interface for BitArray  class
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| ~ Constructor I ~ Destructor -: ICopy assign

| Numltems | IsinRange I ICopy constr

| - _thglt_ - I - _Cl_ea_rB_it_ - | I IntSize

| SetBit | | ClearAllBits | | this

L o e o — — — - L e o — —_ — -

N I ArraySize I I TheArra

A } |
" Visible members  Hidden member functions  Fhdden data

BitArray  members
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BitArray A, /I Call with Size = 320

BitArray B(50);  // Call with Size =50

BitArray C = 50; /[ Same as above

BitArray D[ 50 ]; /I Calls 50 constructors, with Size 320
BitArray *E = new BitArray; // Allocates BitArray of Size 320
E = new BitArray( 20 );// Allocates BitArray of size 20; leaks
BitArray F = "wrong"; // Does not match basic constructor
BitArray G(); /[ This is wrong!

Construction examples

23
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Chapter 3

Templates

24
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Array position

Initial State:

After A[0..1] is sorted:

After A[0..2] is sorted:

After A[0..3] is sorted:

After A[0..4] is sorted:

NI N[O O1| O ©

g1 o1 0| 0| Giff

D 0| ©| ©W]| O N

QO O[N] N N W

Ol oo O Of &

After A[0..5] is sorted:

2

3

5

6

8

O Wl W|W| W] wWw( o

Basic action of insertion sort (shaded part is sorted)

25
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Array position o 1 2 (3 |4 |5

Initial State:
After A[0..1] is sorted:
After A[0..2] is sorted:
After A[0..3] is sorted:
After A[0..4] is sorted:
After A[0..5] is sorted:
Closer look at action of insertion sort (dark shading indi-

cates sorted area; light shading is where new element was
placed)

2

9|6
819 |3
6 8|9

NI N|DN| O1] O1] 0
Wl o1 o1 60| | U1
g oo 0| ©]| ©
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1 /] Typical template interface

2 template <class Etype >

3 class ClassName

4 {

5  public:

6  // Public members

7 private:

8 // Private members

9}

10

11

12 // Typical member implementation
13 template <class Etype >

14 ReturnType

15 ClassName <Etype >:: MemberNamd Parameter List ) /* const */
16 {

17/ Member body

18 }

Typical layout for template interface and member functions

27
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Chapter 4

Inheritance

28
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c
{

1
2
3
4
5
6
7
8
9

10
11
12
13
14 }

lass Derived : public Base

/I Any members that are not listed are inherited unchanged
Il except for constructor, destructor,

/I copy constructor, and operator=

public:

/I Constructors, and destructors if defaults are not good

// Base members whose definitions are to change in Derived
/I Additional public member functions

private:

// Additional data members (generally private)

// Additional private member functions

// Base members that should be disabled in Derived

General layout of public inheritance

29
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Public inheritance situation Public Protected Private
Base class member function accessing Yes Yes Yes
Derived class member function accessing M Yes Yes No
main , accessing B.M Yes No No
main , accessing D.M Yes No No
Derived class member function accessing Yes No No

B is an object of the base class; D is an object of the publicly derived class; Mis a
member of the base class.

Access rules that depend on what M'’s visibility is in the

base class
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Public inheritance situation Public Rrotected Private
F accessing B.MB Yes Yes Yes
F accessing D.MD Yes No No
F accessing D.MB Yes Yes Yes

B is an object of the base class; D is an object of the publicly derived class; MB is a
member of the base class. MD is a member of the derived class. Fis a friend of the
base class (but not the derived class)

Friendship is not inherited

31
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1 const VectorSize = 20;

2 Vector<int> V( VectorSize );

3 BoundedVector<int> BV( VectorSize, 2 * VectorSize - 1 );
4

5

BV[ VectorSize | =V[0];

Vector and BoundedVector classes with calls to

operator|]

that are done automatically and correctly

32
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Vector<int> *Vptr;
const int Size = 20;
cin >> Low;
if( Low )
Vptr = new BoundedVector<int>( Low, Low + Size - 1);
else
Vptr = new Vector<int>( Size )

© 00 ~NO Ol WN P

(*Vptr)[ Low ] = 0; /l What does this mean?

(SN
o

Vector and BoundedVector classes

33
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@ Rectangle

Square

The hierarchy of shapes used in an inheritance example

34
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1. Nonvirtual functionsOverloading is resolved at compile
time. To ensure consistency when pointers to objects are
used, we generally use a nonvirtual function only when the
function is invariant over the inheritance hierarchy (that is,
when the function is never redefined). The exception to this
rule is that constructors are always nonvirtual, as mentioned
in Section 4.5.

2. Virtual functions Overloading is resolved at run time. The
base class provides a default implementation that may be
overridden by the derived classes. Destructors should be
virtual functions, as mentioned in Section 4.5.

3. Pure virtual functionsOverloading is resolved at run time.
The base class provides no implementation. The absence of
a default requires that the derived classes provide an imple-
mentation.

Summary of nonvirtual, virtual, and pure virtual functions
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1. Provide a new constructor.

2. Examine each virtual function to decide if we are willing to
accept its defaults; for each virtual function whose defaults
we do not like, we must write a new definition.

3. Write a definition for each pure virtual function.

4. Write additional member functions if appropriate.

Programmer responsibilities for derived class

36



Copyright] 1996 by Addison-Wesley Publishing Company

Chapter 5
Algorithm Analysis

37
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Running times for small inputs

38
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Running time for moderate inputs
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Function Name
C Constant
log N Logarithmic
I ngN Log-squared
N Linear
NlogN Nlog N
N2 Quadratic
N3 Cubic
oN Exponential

Functions in order of increasing growth rate

40
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[ j j+1 q

<0 Sirlq

<Splq

The subsequences used in Theorem 5.2
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42

i jj+l
S,q S,q
>=0 <=S,q >=0 <=S,q
Pl p p-1p

The subsequences used in Theorem 5.3. The sequence
from p to g has sum at most that of the subsequence from |
to g. On the left, the sequence from i to g is itself not the
maximum (by Theorem 5.2). On the right, the sequence
from i1 to g has already been seen.
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DEFINITION: (Big-Oh) T( ) = O( ) if there are pos-

itive constantsc and Ny such thaT( )<cF( )
N=N,.

DEFINITION: (Big-Omega)T( ) = Q( ) if there are
positive constantc andN, such thaT( )zcF( ) when
N=N,.

DEFINITION: (Big-Theta)T( ) = O( ) if and only if
T( )= 0( )andT( )= Q( ) -

DEFINITION: (Little-Oh) T( )= o( ) if there are

positive constantc andN, such thaT( )<cF( ) when

N2 N,.

43
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44

Mathematical expression

Relative rates of growth

T(N) = O(F(N))

Growth of T(N )is < growth of F(N )

T(N) = Q(F(N))

Growth of T(N )is > growth of F(N )

T(N)=0O(F(N))

Growth of T(N ) is = growth of F(N )

T(N) = o(F(N))

Growth of T(N )is < growth of F(N )

Meanings of the various growth functions
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N O( N3) O( N2) O(NlogN) O(N)
10 0.00103 0.00045 0.00066 0.00034
100 0.47015 0.01112 0.00486 0.00063
1,000 448.77 1.1233 0.05843 0.00333
10,000 NA 111.13 0.68631 0.03042
100,000 NA NA 8.01130 0.29832

Observed running times (in seconds) for various maximum
contiguous subsequence sum algorithms



Copyright] 1996 by Addison-Wesley Publishing Company

CPUtime T

N (milliseconds) T/N T/N? T/(NlogN )
10,000 100 0.01000000 0.00000100 0.00075257
20,000 200 0.01000000 0.00000050 0.00069990
40,000 440 0.01100000 0.00000027 0.00071953
80,000 930 0.01162500 0.00000015 0.00071373

160,000 1960 0.01225000 0.00000008 0.00070860
320,000 4170 0.01303125 0.00000004 0.00071257
640,000 8770 0.01370313 0.00000002 0.00071046

Empirical running time for N binary searches in an N-item

array
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Chapter 6

Data Structures

47
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1 #include <iostream.h>
2 #include "Stack.h"

3
4 [/ Simple test program for stacks
5
6 main()
7{
8  Stack<int> S;
9
10 for(inti=0;i<5;i++)
11 S.Push(i);
12
13 cout << "Contents:";
14 do
15 |
16 cout << '' << S.Top();
17 S.Pop();
18 } while( !S.IsEmpty() );
19  cout<<'\n'
20
21 return O;
22 }

Sample stack program; output is
Contents: 43210

48
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Push Pop, Top

Stack

Stack model: input to a stack is by Push, output is by
Top, deletion is by Pop

49
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1 #include <iostream.h>
2 #include "Queue.h"

3
4 [/ Simple test program for queues
5
6 main()
7{
8  Queue<int> Q;
9
10 for(inti=0;i<5;i++)
11 Q.Enqueue(i);
12
13 cout << "Contents:";
14 do
15 {
16 cout <<'' << Q.Front();
17 Q.Dequeue();
18} while(!Q.IsEmpty() );
19  cout <<'\n'
20
21 return O;
22 }

Sample queue program; output is

Contents:01 234

50
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Enqueue Dequeue
™ Queue >
Front

Queue model: input is by Enqueue , output is by Front
deletion is by Dequeue
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1 #include <iostream.h>
2 #include "List.h"

3
4 [/ Simple test program for lists
5
6 main()
7{
8  List<int> L;
9  Listltr<int> P =L,
10
11 /I Repeatedly insert new items as first elements
12 for(inti=0;i<5;i++)
13 {
14 P.Insert(i);
15 P.Zeroth(); // Reset P to the start
16}
17

18 cout << "Contents:";
19  for( P.First(); +P; ++P)

20 cout <<''<< P();
21  cout << "end\n";

22

23 return O;

24 }

Sample list program; output is Contents: 4 32 1
0 end

52
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Insert Find  andRemove
any item by name
or by rank

List

Link list model: inputs are arbitrary and ordered, any item
may be output, and iteration is supported, but this data
structure is not time-efficient

53
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| |
AO | — | Al | |
| |

A2

First

A simple linked list

54
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A tree

55
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sy

Expression tree for (a+b)*(c-d)

56
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1 #include <iostream.h>
2 #include "Bst.h"

3
4 [/ Simple test program for binary search trees
5
6 main()
7{
8  SearchTree<String> T;
9
10  T.Insert( "Becky");
11
12 /I Simple use of Find/WasFound
13 /I Appropriate if we need a copy
14  String Resultl = T.Find( "Becky" );
15 if( T.WasFound())
16 cout << "Found " << Resultl <<},
17  else
18 cout << "Becky not found;";
19
20 /I More efficient use of Find/WasFound
21 /I Appropriate if we only need to examine
22 const String & Result2 = T.Find( "Mark" );
23 if( T.WasFound())
24 cout << " Found " << Result2 <<}
25 else
26 cout << " Mark not found; ";
27
28  cout <<'\n'
29
30 return0O;
31 }

Sample search tree program,;

output is Found Becky; Mark not found;

57
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Insert Find andRemove
any item by name
or rank

Binary
Search Tree

58

Binary search tree model; the binary search is extended to

allow insertions and deletions
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1 #include <iostream.h>

2 #include "Hash.h"

3

4 [/ A good hash function is given in Chapter 19
5 unsigned int Hash( const String & Element, int TableSize );
6

7 /I Simple test program for hash tables

8

9 main()
10 {
11  HashTable<String> H;
12
13 H.Insert( "Becky");
14
15  const String & Result2 = H.Find( "Mark" );
16 if( H.WasFound() )

17 cout << " Found " << Result2 << ";";
18 else

19 cout << " Mark not found; ";

20

21  cout<<'\n";

22

23 return O;

24 }

Sample hash table program;
output is Found Becky; Mark not found;

59
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Insert Find andRemove
any item by name

Hash
Table

The hash table model: any named item can be accessed or
deleted in essentially constant time
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1 #include <iostream.h>

2 #include "BinaryHeap.h"

3

4[] Simple test program for priority queues
5

6 main()

7{

8  BinaryHeap<int> PQ);

9

10 PQ.Insert( 4); PQ.Insert( 2 ); PQ.Insert( 1);
11 PQ.Insert(5); PQ.Insert( 0);

12

13 cout << "Contents:";

14 do

15

16 cout << '' << PQ.FindMin();
17 PQ.DeleteMin();

18 }while('PQ.ISEmpty());
19 cout<<'\n'

20

21 return O;

22 }

Sample program for priority queues;
output is Contents: 012 34

61
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DeleteMin

\ FindMin

Priority
Queue

Insert

Priority queue model: only the minimum element is acces-
sible
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Data Access Comments
Structure
Stack Most recent only, Pop, O(1 ) Very very fast
Queue Least recent only, Dequeue, O(1) Very very fast
Linked list Any item O(N)
Search Tree | any item by name or rank, O( log N) | Average case, can be made
worst case
Hash Table Any named item, O(1 ) Almost certain
Priority Queue FindMin , O(1), Insert is O(1 )on
DeleteMin , O(logN) average O( log N ) worst
case

Summary of some data structures



Copyright] 1996 by Addison-Wesley Publishing Company

Chapter 7

Recursion

64
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TOP: S(2)
S(3)
S(4)

main()

Stack of activation records

65
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F5
/ \
F4 F3
— T _— T~
F3 F2 F2 F
—— T — T~ — T~
F2 F1 F1 FO F1 FO
— T~
F1 FO

Trace of the recursive calculation of the Fibonacci numbers
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 Divide: Smaller problems are solved recursively (except, of
course, base cases).

» Conquer The solution to the original problem is then formed
from the solutions to the subproblems.

Divide-and-conquer algorithms

67
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First Half Second Half
4 -3 5 -2 -1 2 6 -2 Values
4* 0 3 -2 -1 1 7* 5 Running Sums

Running Sum from the Center (*denotes maxi-
mum for each half)

Dividing the maximum contiguous subsequence problem
into halves

68
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/ \
AN AN
A « ¥

« ¥ .

Trace of recursive calls for recursive maximum contiguous
subsequence sum algorithm
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Assuming N is a power of 2, the solution to the equation
T(N) = 2T(N/2 )+ N, with initial conditionT(1) = 1 is
T(N )= NlogN + N.

Basic divide-and-conquer running time theorem

70
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The solution  to the equation
T( )= AT( )+O( ), whereA>1 andB>1 |,
IS

7 O( ) if A> BK
Ho A = BK
ifA =
T )=1 ( )
§ o( ) if A< BK

General divide-and-conquer running time theo-
rem
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Some of the subproblems that are solved recursively in
Figure 7.15
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MNCICACEE
MNGCICACHK X
MNCRCACH
@3
MNGCRCK XX

Alternative recursive algorithm for coin-changing problem

® ® 6 @ @
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Chapter 8
Sorting Algorithms

74
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» Words in a dictionary are sorted (and case distinctions are
ignored).

 Files in a directory are often listed in sorted order.

» The index of a book is sorted (and case distinctions are
ignored).

» The card catalog in a library is sorted by both author and title.

A listing of course offerings at a university is sorted, first by
department and then by course number.

* Many banks provide statements that list checks in increasing
order (by check number).

* In a newspaper, the calendar of events in a schedule is gener-
ally sorted by date.

» Musical compact disks in a record store are generally sorted
by recording artist.

* In the programs that are printed for graduation ceremonies,
departments are listed in sorted order, and then students in
those departments are listed in sorted order.

Examples of sorting
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76

Operators

Definition

operator> (A, B)

return B < A;

operator>=( A, B)

return '(A<B);

operator<=( A, B)

return (B <A);

operator!=( A, B)

return A<B || B <A;

operator==( A, B)

return (A<B||B<A);

Deriving the relational and equality operators from

operator<
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Original 81 94 11 96 12 35 17 95 28 58 41 75 15

After 5-sort | 35 17 11 | 28 - 41 15 | 96 - 81 94 05

After 3-sort | 28 12 11 15 41 58 17 75 81 96 95
After1-sort | 11 12 15 17 28 35 41 58 75 81 94 95 096

Shellsort after each pass, if increment sequence is {1, 3, 5}
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N Insertion Shellsort
sort Shell's Odd gaps only | Dividing by 2.2

1,000 122 11 11 9

2,000 483 26 21 23

4.000 1,936 61 59 54

8,000 7,950 153 141 114
16,000 32,560 358 322 269
32,000 131,911 869 752 575
64,000 520,000 2,091 1,705 1,249

Running time (milliseconds) of the insertion sort and
Shellsort with various increment sequences
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1 13| 24 26 2| 1% 27 3B
? T T
Aptr Bptr Cptr
1 13| 24| 26 2| 1% 2Y 3B 1
? T ?
Aptr Bptr Cptr
1 13| 24 26 2| 1% 2Y 3B 1]2
! ! !
Aptr Bptr Cptr
1|13 24| 26 2| 1% 27 3B 11213
! ? ?
Aptr Bptr Cptr

Linear-time merging of sorted arrays (first four steps)
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1 |13| 24] 26 2| 1% 27 3B 1213} 15
! ! |
Aptr Bptr Ci
1 |13| 24] 26 2| 1% 27 3B 12|13 152
Aptr Bptr
1 |13| 24] 26 2| 1% 27 3B 12|13 152
Aptr Bptr
1 | 13| 24] 26 2 1% 27 3B 12|13 15~
Aptr Bptr

Linear-time merging of sorted arrays (last four steps)
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The basic algorithrQuicksor(S) consists of the following four
steps:

1. If the number of elements Sis 0 or 1, then return.

2. Pickanyelemeni in & This is called thpivol.

3. Partition £ — {v} (the remaining elements ) into two dis-
joint groups.L = { | } andR =
{xOS={ }|x=Vv}.

4. Return the result cQuicksor(L) followed byv followed by
Quicksor(R).

Basic quicksort algorithm
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81 31
57 75
13 43 26

92 65 C

+ Select pivot

81 31
57 75
13 43 26
92 65 C
* Partition

chksort Quickso

smaII items large iter

\ / J

Q 26 31 43 57 65 75 81 92

The steps of quicksort
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Because recursion allows us to take the giant leap of faith, the
correctness of the algorithm is guaranteed as follows:

» The group of small elements is sorted, by virtue of the recur-
sion.

» The largest element in the group of small elements is not
larger than the pivot, by virtue of the partition.

» The pivot is not larger than the smallest element in the group
of large elements, by virtue of the partition.

» The group of large elements is sorted, by virtue of the recur-
sion.

Correctness of quicksort

83
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8

~

8

1

4

9

0

3

5

2

7

Partitioning algorithm: pivot element 6 is placed at the end

8

1

4

9

0

3

5

2

7

Partitioning algorithm:
at small element 2

| stops at large element 8; | stops

2

1

4

9

0

3

5

8

7

Partitioning algorithm
swapped

- out-of-order elements 8 and 2 are

2

1

4

9

0

3

5

8

7

Partitioning algorithm: | stops at large element 9; | stops

at small element 5

2

1

4

5

0

3

9

8

7

Partitioning algorithm
swapped

. out-of-order elements 9 and 5 are

2

1

4

5

0

3

9

8

7

Partitioning algorithm:
at small element 3

| stops at large element 9; | stops

2

1

4

5

0

N - K

7

9

Partitioning algorithm

: swap pivot and element in position |
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8 1 4 9 6 3 5 2 7 0

Original array

0 1 4 9-3 5 2 7 8

Result of sorting three elements (first, middle, and last)

Result of swapping the pivot with next to last element

85
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» We should not swap the pivot with the element in the last
position. Instead, we should swap it with the element in the
next to last position.

* We can start atLow+1 and] atHigh-2 .

* We are guaranteed that, whenevesearches for a large ele-
ment, it will stop because in the worst case it will encounter
the pivot (and we stop on equality).

* We are guaranteed that, whenevesearches for a small ele-
ment, it will stop because in the worst case it will encounter
the first element (and we stop on equality).

Median-of-three partitioning optimizations
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1.

If the number of elements Sis 1, then presumabk is

also 1, and we can return the single elemeS. in

Pick any elemerv in &. This is the pivot.

Partition £ — {v} into L andR, exactly as was done for
quicksort.

If kis less than or equal to the number of elemerL, then
the item we are searching for must bL. Call Quickselect(
L, k ) recursively. Otherwise, k is exactly equal to one
more than the number of itemsL, then the pivot is thkth
smallest element, and we can return it as the answer. Other-
wise, thekth smallest element lies R, and it is thek —|L| —
1)th smallest element R. Again, we can make a recursive
call and return the result.

Quickselect algorithm
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Ptr[0] Ptr[1] Ptr[2] Ptr[3] Ptr[4]

;/\i M
200 100 400 500 300
A[Q] Al1] Al2] A[3] Al4]

Using an array of pointers to sort
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Loc[O] Loc[l] Loc[2] Loc[3] Loc[4]

1 0 4 2 3
200 100 400 500 300
Al0] Al1] Al2] Al3] Al4]

Data structure used for in-place rearrangement
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Chapter 9

Randomization

90
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Winning Tickets

0

1

2

3

4

5

Frequency

0.135

0.271

0.271

0.180

0.090

0.036

Distribution of lottery winners if expected number of win-

nersis 2
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An important nonuniform distribution that occurs in simula-
tions is thePoisson distributionOccurrences that happen under
the following circumstances satisfy the Poisson distribution:

* The probability of one occurrence in a small region is propor-
tional to the size of the region.

» The probability of two occurrences in a small region is pro-
portional to the square of the size of the region and is usually
small enough to be ignored.

» The event of getting occurrences in one region and the event
of gettingj occurrences in another region disjoint from the
first region are independent. (Technically this statement
means that you can get the probability of both events simulta-
neously occurring by multiplying the probability of individ-
ual events.)

* The mean number of occurrences in a region of some size is
known.

Then if the mean number of occurrences is the congtdhén
the probability of exactlk occurrences igke—a/ ki

Poisson distribution
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Chapter 10

Fun and Games

93
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0 1 2 3
oOjt h i s
1w a t s
2lo a h g
3| f g d t

Sample word search grid
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for each word W in the word list
for each row R
for each column C
for each direction D
check if W exists at row R, column C
in direction D

Brute-force algorithm for word search puzzle
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for each row R
for each column C
for each direction D
for each word length L
check if L chars starting at row R column C
in direction D form a word

Alternate algorithm for word search puzzle

96
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for each row R
for each column C
for each direction D
for each word length L
check if L chars starting at row R column
C in direction D form a word
if they do not form a prefix,
break; // the innermost loop

Improved algorithm for word search puzzle; incorporates a
prefix test
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1. If the position istermina (that is, can immediately be evalu-
ated), return its value.

2. Otherwise, if it is the computer’s turn to move, return the
maximum value of all positions reachable by making one
move. The reachable values are calculated recursively.

3. Otherwise, it is the human’s turn to move. Return the mini-
mum value of all positions reachable by making one move.
The reachable values are calculated recursively.

Basic minimax algorithm
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C, ‘ C, ‘ Cs . L
H2A HZB HZC HZD -

DRAW\ /DRA ? ? ?

Alpha-beta pruning: After H, 5 is evaluated, C,, which is the
minimum of the H,'’s, is at best a draw. Consequently, it
cannot be an improvement over C,. We therefore do not

need to evaluate H,g, Hye, and H,p, and can proceed
directly to C3
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Two searches that arrive at identical positions
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Chapter 11

Stacks and Compilers
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[
( ( ( {

( [ ] ¥ )* [ eof*

Errors (indicated by *):
} when expecting )

) with no matching opening symb C

[ unmatched at end of input

Stack operations in balanced symbol algorithm

102
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2 4
1 1 1 -1
1 2 - 4
3 6
1024 1024 3072 3072 18432
-1 1 -1 1 1
N 3 * 6 *
2
2 2 4
7 7 7 2401
18432| | 18432| |18432| | 18432 7
-1 -1 -1 -1 -1
2 2 R R ]

Steps in evaluation of a postfix expression
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104

Infix expression

Postfix expression

Associativity

2+3+4 23+4+ Left associative: Input + is
lower than stack +
27374 23411 Right associative: Input ™ is

higher than stack

Associativity rules
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» OperandsImmediately output.

» Close parenthesid?op stack symbols until an open parenthe-
sis is seen.

» Operator. Pop all stack symbols until we see a symbol of
lower precedence or a right associative symbol of equal pre-
cedence. Then push the operator.

» End of input Pop all remaining stack symbols.

Various cases in operator precedence parsing
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Infix: 1-22373-(4+5%6)*7

1 - 2 A 3

A +
H 3 ™ ( (|4 (

3 - ( 4 +

* *

+ +

( (| © o - 7

* * 7

Infix to postfix conversion
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Expression tree for (a+b)*(c-d)

107
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Chapter 12

Utilities
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Character Code Frequency Total Bits

a 000 10 30

e 001 15 45

[ 010 12 36

s 011 3 9

t 100 4 12

sp 101 13 39

nl 110 1 3
Total 174

A standard coding scheme



Copyright] 1996 by Addison-Wesley Publishing Company 110

Representation of the original code by a tree
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A slightly better tree
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Optimal prefix code tree
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Character Code Frequency Total Bits
a 001 10 30
e 01 15 30
[ 10 12 24
S 00000 3 15
t 0001 4 16
sp 11 13 26
nl 00001 1 5
Total 146

Optimal prefix code
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@& ©® O 6 O ®

@ ©® O O @ @ﬁ

10 15 12 13(
® © 0O & ¢ O

15 12 13
& O & ¢ O

Huffman’s algorithm after each of first three merges
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Huffman’s algorithm after each of last three merges



Copyright] 1996 by Addison-Wesley Publishing Company

Character Weight Parent Child Type

0 a 10 9 1
1 e 15 11 1
2 [ 12 10 0
3 S 3 7 0
4 t 4 8 1
5 sp 13 10 1
6 nl 1 7 1
7 T1 4 8 0
8 T2 8 9 0
9 T3 18 11 0
10 T4 25 12 1
11 T5 33 12 0
12 T6 58 0

Encoding table (numbers on left are array indices)
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I Word I Dynamically a

Lines _|_>

IdNode data members: Word is a String ; Lines is
a pointer to a Queue
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Dynamica
que

AN
NN

AN

Temporary

NewWord

/

Object stored in the tree

The object in the tree is a copy of the temporary; after the
iInsertion is complete, the destructor is called for the tempo-
rary
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Chapter 13

Simulation
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1. Atthe start, the potato is at player 1; after one pass it is at
player 2.

2. Player 2 is eliminated, player 3 picks up the potato, and
after one pass it is at player 4.

3. Player 4 is eliminated, player 5 picks up the potato and
passes it to player 1.

4. Player 1 is eliminated, player 3 picks up the potato, and
passes it to player 5.

5. Player 5 is eliminated, so player 3 wins.

® ® 6
® ©
(@)

ONCOBIONO
® ©®  ®

(b) ()

The Josephus problem
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© 00 ~NO Ol WN P

NNNNNNNNRRRRRRRRR B
N~NO UM WNEREROOOMNODUDMWNIERO

User 0 dials in at time 0 and connects for 1 minutes
User 0 hangs up at time 1

User 1 dials in at time 1 and connects for 5 minutes
User 2 dials in at time 2 and connects for 4 minutes
User 3 dials in at time 3 and connects for 11 minutes
User 4 dials in at time 4 but gets busy signal

User 5 dials in at time 5 but gets busy signal

User 6 dials in at time 6 but gets busy signal

User 1 hangs up at time 6

User 2 hangs up at time 6

User 7 dials in at time 7 and connects for 8 minutes
User 8 dials in at time 8 and connects for 6 minutes
User 9 dials in at time 9 but gets busy signal

User 10 dials in at time 10 but gets busy signal

User 11 dials in at time 11 but gets busy signal

User 12 dials in at time 12 but gets busy signal

User 13 dials in at time 13 but gets busy signal

User 3 hangs up at time 14

User 14 dials in at time 14 and connects for 6 minutes
User 8 hangs up at time 14

User 15 dials in at time 15 and connects for 3 minutes
User 7 hangs up at time 15

User 16 dials in at time 16 and connects for 5 minutes
User 17 dials in at time 17 but gets busy signal

User 15 hangs up at time 18

User 18 dials in at time 18 and connects for 7 minutes
User 19 dials in at time 19 but gets busy signal

Sample output for the modem bank simulation: 3 modems;
a dial in is attempted every minute; average connect time is
5 minutes:; simulation is run for 19 minutes
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1. The firstDialln  request is inserted

2. After Dialln is removed, the request is connected result-
ing in aHangup and a replacemeDialln  request

3. A Hangup request is processed

4. A Dialln requestis processed resulting in a connect. Thus
both aHangup andDialln  event are added (three times)

5. A Dialln request fails; a replacemeDialln  is gener-
ated (three times)

6. A Hangup request is processed (twice)

7. A Dialln  request succeecHangup andDialln  are
added.

Steps in the simulation
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0 Dialln
User O, Len1
1 Hangup 1 Dialln
User 0, Len 1 User1, Lenb5
1 Dialln
User 1,Len 5
6 Hangup 2 Dialln
Userl,Len5 User 2, Len 4
6 Hangup 6 Hangup 3 Dialln
User 1, Len5 User 2, Len4 User 3, Len 11
6 Hangup 6 Hangup 14 Hangup [
User 1, Lenb User 2, Len 4 User 3, Len 11 |
6 Hangup 6 Hangup 14 Hangup T
Userl,Len5 User 2, Len4 User 3, Len 11 |~
6 Hangup 6 Hangup 14 Hangup _(
User1,Len5 User 2, Len 4 User3,Lenll | *
6 Hangup 6 Hangup 1 Hangup [ =
User1,Len5 User 2, Len 4 User3, Len1l | !
6 Hangup 1/] Hangup 7 Dialln
User 2,Len 4 User 3, Len 11 User 7,Len 8
1/| Hangup 7 Dialln
User 3, Len 1] User7,Len 8
1/| Hangup 1 Hangup 8 Dialln
User 3, Len 1] User 7, Len 8 User 8, Len 6

Priority queue for modem bank after each step
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Chapter 14
Graphs and Paths
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A directed graph
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0| 1(2) —»f 3(1) —__

114(10)— 33) ——

21 0(4) —»{ 5(5) I—

31 42 —» 6(4) —» 5(8) —» 2(2)

41 66) —

5—_I_

6| 5(1) —_

Adjacency list representation of graph in Figure 14.1;
nodes in list / represent vertices adjacent to / and the cost
of the connecting edge
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» Dist : The length of the shortest path (either weighted or
unweighted, depending on the algorithm) from the starting
vertex to this vertex. This value is computed by the shortest
path algorithm.

» Prev : The previous vertex on the shortest path to this vertex.

* Name: The name corresponding to this vertex. This is estab-
lished when the vertex is placed into the dictionary and will
never change. None of the shortest path algorithms examine
this member. It is only used to print a final path.

» Adj : A pointer to a list of adjacent vertices. This is estab-
lished when the graph is read. None of the shortest path algo-
rithms will change the pointer or the linked list.

Information maintained by the Graph table
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Dist Prev Name Adj

DC10 0| 66 4 D e 3
AB12 —
DB 23 1 76 0 C — P
A D 87 0
E D 43 21 0 -1 1A gt
BE11 S S
T 3 12 2 B gl
Input 4| 23 3 E —
Graph table
D (0)
B
A(2)
Visual representation of graph Dictic

Data structures used in a shortest path calculation, with
input graph taken from a file: shortest weighted path from A
to Cis: Ato Bto Eto Dto C (cost 76)
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Graph after marking the start node as reachable in zero
edges
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Graph after finding all vertices whose path length from the
startis 1



Copyright] 1996 by Addison-Wesley Publishing Company 131

Graph after finding all vertices whose shortest path from
the start is 2
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Final shortest paths



G

How the graph is searched in unweighted shortest path

computation
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Eyeball is at v; wis adjacent; D,, should be lowered to 6
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If D, is minimal among all unseen vertices and all edge
Ccosts are nonnegative, then it represents the shortest path
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R
) S
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Stages of Dijkstra’s algorithm
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Graph with negative cost cycle



Y Ne b be

fc

@

Topological sort



Stages of acyclic graph algorithm
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Activity-node graph
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Top: Event node grap; Bottom: Earliest completion time,
latest completion time, and slack (additional edge item)
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Chapter 15

Stacks and Queues
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TOS (-1)

How the stack routines work: empty stack, Push(A)

Push(B) , Pop

TOS (0)

TOS (1)

143
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MakeEmpty
Size=0
Enqueue(A)
Size=1
Enqueue(B)
Size=2
Dequeue()
Size=1
Dequeue()
Size=0

Basic array implementation of the queue

Back

Front
Back
A
Front
Back
A B
Front
Back
B
Front
Back

Front

144
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After 3Enqueues C D
Size =3 Front
Back
Enqueue(F) F C D
Size =4 Front
Back
Dequeue() F D
Size =3 Front
Back
Dequeue() F
Size =2
Back
Dequeue() F
Size=1 Front

Array implementation of the queue with wraparound
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TopOfStack

Linked list implementation of the stack
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Linked list implementation of the queue
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Ba.c/k

Before ... :_
] L
ek \

After ... :_ » X :_
| |

Enqueue operation for linked-list-based implementation
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Chapter 16
Linked Lists
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FrontOfList

Basic linked list



Copyright] 1996 by Addison-Wesley Publishing Company 151

|
e N [ S — B | —»
| .

/

Current ,
Tmp

Insertion into a linked list: create new node (TMY), copy in
X, set Tm[’s next pointer, set Current ’s next pointer
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| | |
—P A | \— E X | - — B | ——p
| | |

/

Current

Deletion from a linked list
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Header

Using a header node for the linked list
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Header

Empty list when header node is used
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e

\ Head Tail;

Doubly linked list
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-

He:& /I’ail

Empty doubly linked list
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i

Insertion into a doubly linked list by getting new node and
then changing pointers in order indicated
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A ...B ... C
; P -
»
First

Circular doubly linked list
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Chapter 17

Trees
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A tree
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Tree viewed recursively
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First child/next sibling representation of tree in Figure 17.1
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mark*
books* courses* .
dsﬂcp*\ipps* copi%\cop%
\ \
chl ch2 chl ch2 chl ch2 syl syl

UNIX directory

163
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mark
books
dsaa
chl
ch2
ecp
chl
ch2
ipps
chl
ch2
courses
cop3223
syl
cop3530
syl
Jogin

The directory listing for tree in Figure 17.4
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books*y) coursesiyy

dm Cop3m

Ch](g) Ch2(7) Ch](4) Ch2(6) Ch](g) Ch2(8) Syl(z) Syl‘

UNIX directory with file sizes
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chl 9
ch2 7
dsaa 17
chl 4
ch2 6
ecp 11
chl 3
ch2 8
ipps 12
books 41
syl 2
cop3223 3
syl 3
cop3530 4
courses 8
Jogin 2
mark 52

Trace of the Size function
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Uses of binary trees: left is an expression tree and right is a
Huffman coding tree
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" RooO

T1.Root

Result of a naive Merge operation
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OldRoot
OldT1.Root
\ T2.Root

Aliasing problems in the Merge operation; T1 is also the
current object
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Recursive view used to calculate the size of atree: S;=S;
+Sp+1
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A Ny
H +1 T T Hgr+1
HL Hg
Y + v Y

Recursive view of node height calculation: H; = Max(
H +1, He+1)
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®® 2®

Preorder, postorder, and inorder visitation routes
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do dl d?2
b0 b1l b2 b2 b2 b2
ao al al al al al al g
e0 el e 2
cO cl cl cl cl c?2
az2 az2 az2 az2 az2 az2 az2
e C

Stack states during postorder traversal
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Chapter 18

Binary Search Trees
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Two binary trees (only the left tree is a search tree)
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Binary search trees before and after inserting 6



Copyright] 1996 by Addison-Wesley Publishing Company 177

Deletion of node 5 with one child, before and after
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(D (D
(2) (9 (3)
ORNO O &
©
@ ©

Deletion of node 2 with two children, before and after
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K<g +1 K==§ +1 K>

Using the Size data member to implement FIndKth
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T

Balanced tree on the left has a depth of log N; unbalanced
tree on the right has a depth of N-1
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PRAR

Binary search trees that can result from inserting a permu-
tation 1, 2, and 3; the balanced tree in the middle is twice
as likely as any other
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Two binary search trees: the left tree is an AVL tree, but
the right tree is not (unbalanced nodes are darkened)
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Minimum tree of height H
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Single rotation to fix case 1
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Single rotation fixes AVL tree after insertion of 1
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Symmetric single rotation to fix case 4
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Single rotation does not fix case 2
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Left-right double rotation to fix case 2
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Double rotation fixes AVL tree after insertion of 5
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Left-right double rotation to fix case 3
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A red black tree is a binary search tree with the following order-
ing properties:

1. Every node is colored either red or black.

2. The root is black.

3. Ifanode is red, its children must be black.

4. Every path from a node toNULL pointer must contain the
same number of black nodes.

Red black tree properties
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Example of a red black tree: insertion sequence is 10, 85,
15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55)
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If Sis black, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 if X is an outside grandchild
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If S is black, then a double rotation involving X, the parent,
and the grandparent, with appropriate color changes,
restores property 3 if X is an inside grandchild
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If Sis red, then a single rotation between the parent and
grandparent, with appropriate color changes, restores
property 3 between X and P
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Color flip; only if X’s parent is red do we continue with a
rotation
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Color flip at 50 induces a violation; because it is outside, a
single rotation fixes it
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Result of single rotation that fixes violation at node 50



Copyright] 1996 by Addison-Wesley Publishing Company 199

Insertion of 45 as a red node
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Deletion: X has two black children, and both of its sibling’s
children are black; do a color flip
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Deletion: X has two black children, and the outer child of its
sibling is red; do a single rotation
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Deletion: X has two black children, and the inner child of its
sibling is red; do a double rotation
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(P)
—P —P
SN0
B C B C @

X is black and at least one child is red; if we fall through to
next level and land on a red child, everything is good; if not,
we rotate a sibling and parent
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The level of a node is

* One if the node is a leaf
* The level of its parent, if the node is red
* One less than the level of its parent, if the node is black

1. Horizontal links are right pointers (because only right chil-
dren may be red).

2. There may not be two consecutive horizontal links (because
there cannot be consecutive red nodes).

Nodes at level 2 or higher must have two children.

4. If a node does not have a right horizontal link, then its two
children are at the same level.

w

AA-tree properties
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30

AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60,
30, 50, 65, 80, 90, 40, 5, 55, 35
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Skew is a simple rotation between X and P
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(RS (X) ©

AWA AWA

Split  is a simple rotation between X and R; note that R's
level increases
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30

After inserting 45 into sample tree:; consecutive horizontal
links are introduced starting at 35

After Split  at 35; introduces a left horizontal link at 50

30 »(70)
)
&1 & G ® @@

After Skew at 50: introduces consecutive horizontal nodes
starting at 40
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After Split  at 40; 50 is now on the same level as 70,
thus inducing an illegal left horizontal link

After Skew at 70: this introduces consecutive horizontal
links at 30

After Split  at 30; insertion is complete
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(2 (3)
ONORORORC

When 1 is deleted, all nodes become level 1, introducing
horizontal left links
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Five-ary tree of 31 nodes has only three levels
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41| 66{|| 874

B-tree of order 5
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A B-tree of ordeM is anM-ary tree with the following proper-

ties:

1.
2.

The data items are stored at leaves.

The nonleaf nodes store upNb— 1 keys to guide the
searching; key represents the smallest key in subireel
The root is either a leaf or has between 2Mrahildren.
All nonleaf nodes (except the root) have betwelr 2]
andM children.

All leaves are at the same depth and have betjviega |
andL children, for somé.

B-tree properties
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41| 66| 871

10| |20 | 28| | 36| |42| |49| |52 |56 68| |73||79| |84 89| |
12|122| 30| |37| |44||50| [53| |57 69| |74||81| |85 90| |
14|24 |31||38| |46 58 70( |76
16 32|39 59

| 8 | 18| 26| 3‘1 |48| 51| 54 |72| 7E| 8+| |92
2||8|[18||26[|35||41||48||51||54 66| (72| |78||83 87| [
4
6

B-tree after insertion of 57 into tree in Figure 18.70
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215

41),| 64| 81

81/ 18| 2q,| 3% 48, 51| 54| 51 72)|| 78||| 83 ¢

y y y y y y
2||8||18||26||35||41||48||51||54||57||66||72||78||83 87
4 (110]||20||28||36||42| 49| |52| 55| |58] |68||73||79||84 89
6 ||12||22| |30 |37| |44 50| |53 |56 59| |69||74| 81| |85 90

14(|24||31||38| |46 70|76

16 32|39

Insertion of 55 in B-tree in Figure 18.71 causes a split into
two leaves
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24,141 66| 8|
v v v v
| 8 | 1€| |35| 38| |4E| 51| 511 ST |72| 78| 81
211811 26139138 41|48 (51 |54 (57166 |72 |78 |83
411102 28134139 42149 (5255 (58169 |73 |79 |84
6|12 |2 30(37 40 44 (50 (53 |56 (59169 |74 |81 |85
14 |2 3 46 7017

Insertion of 40 in B-tree in Figure 18.72 causes a split into
two leaves and then a split of the parent node
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2q(41 | 6%| 88

8][1 26/ (3493 4149 [51][54 [57 [66 [72 [78
102 24136 [3 42|49 52|55 |58 |69 |73 |79
122 30|37 |4 44|50 |53 |56 |59 |69 |74 81
14 |2 3 46 707
1 3

B-tree after deletion of 99 from Figure 18.73
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Chapter 19
Hash Tables
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After Insert 89 After Insert 18 After Insert 49 After Insert 38

49

49

58

Hash( 89, 10 ) =8
Hash( 18,10)=8
Hash(49,10)=9
Hash(58,10)=8
Hash( 9,10)=9

0

1

2

3

4

5

6

7

8 18

9 89 89

18

Linear probing hash table after each insertion

89

18

89

219
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49

58

Hash( 89, 10 ) =8
Hash(18,10)=8
Hash(49,10)=9
Hash(58,10)=8
Hash( 9,10)=9

After Insert 89 After Insert 18 After Insert 49 After Insert 58

0 49

1

2

3

4

5

6

7

8 18 18

9 89 89 89

18

89

220

Quadratic probing hash table after each insertion (note that

the table size is poorly chosen because it is not a prime

number)
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Chapter 20
A Priority Queue: The Binary Heap
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ABCDEFGHIJI
5 6 7 8 9 10 11 12 13

A complete binary tree and its array representation
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Heap order property
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Two complete trees (only the left tree is a heap)



Copyright] 1996 by Addison-Wesley Publishing Company 225

Attempt to insert 14, creating the hole and bubbling the
hole up
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14 G
;
ClElElE

The remaining two steps to insert 14 in previous heap
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Creation of the hole at the root
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Next two steps in DeleteMin
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Last two steps in DeleteMin
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Recursive view of the heap
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Initial heap (left); after PercolateDown(7) (right)

After PercolateDown(6) (left); after
PercolateDown(5) (right)
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After PercolateDown(4) (left); after
PercolateDown(3) (right)

After PercolateDown(2) (left); after
PercolateDown(1) and FixHeap terminates
(right)

232
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O
(2 @
() () () ()
ORNOENOEN OO OO
00101010001 0]0]0]0I010]0]¢

Marking of left edges for height one nodes

O
(0 (0
() () () ()
ORROEROEROENOENOENG
Sl0]0]0]0]0]0]0]0SI0I0I0I0]t

Marking of first left and subsequent right edge for height
two nodes
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O
(2 (0
(] () (] ()
RN OO OENOENOENG
0j0]0]0]0I0i0]0]0]0I0I010]0]¢

Marking of first left and subsequent two right edges for
height three nodes

(2 (0
(] @ (] ()
o ) ) O
0l0]0]0]0]0]0]0]0SI0I0I0I0]¢

Marking of first left and subsequent right edges for height 4
node
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97

53

59

14

21

10

(Max) Heap after FixHeap phase

11

12

13

235
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1. Toss each item into a binary heap.

Apply FixHeap .

3. CallDeleteMin N times; the items will exit the heap in
sorted order.

N

Heapsort algorithm
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11 12 13

11 12 13

Heap after second DeleteMax
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Al 81 94 11 9% 12 35 17 99 28 58 41 75 15
A2
Bl
B2

Initial tape configuration
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Al
A2
Bl
B2

11 81 94
12 35 96

17 28 99
41 58 75

15 ‘

Distribution of length 3 runs onto two tapes

Al
A2
Bl
B2

11 12 35 81 94 96
17 28 41 58 75 99

15

Tapes after first round of merging (run length = 6)

Al
A2
Bl
B2

11 12 17 28 35 41 58 75 81 94 96 99
15

Tapes after second round of merging (run length = 12)

Al
A2
Bl
B2

11 12 15 17 28 35 41 58 75 81 94 96

99

Tapes after third round of merging

239
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Al
A2
A3
Bl
B2
B3

11
12
17

81
35
28

94
96
99

41 58 75
15

Initial distribution of length 3 runs onto three tapes

Al
A2
A3
Bl
B2
B3

11
15

12
41

17
58

28 35 81 94 96 99
75

After o

ne round of three-way merging (run length = 9)

Al
A2
A3
Bl
B2
B3

11

12

15

17 28 35 |41 58 75 81 94

96

99

After two rounds of three-way merging

240
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Run After
Const. T3+T2 | T1+T2 | T1+T3 | T2+T3 | T1+T2 | T1+T3 | T2+T3
T1 0 13 5 0 3 1 0 1
T2 21 8 0 5 2 0 1 0
T3 13 0 8 3 0 2 1 0

Number of runs using polyphase merge

241



Copyright] 1996 by Addison-Wesley Publishing Company 242

3 Elements in Heap Array Next Item
Output
Array[1] Array[2] Array[3] Read

11 94 81 11 96
Runl

81 94 96 81 12
Run 1 94 96 12 94 35

96 35 12 96 17

17 35 12 End of Run Rebuild Heap

12 35 17 12 99

17 35 99 17 28

28 99 35 28 58
Run 2

35 99 58 35 41

41 99 58 41 75

58 99 75 58 End of Tape

99 75 99

75 End of Run Rebuild Heap

Run 3 75 75

Example of run construction
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Chapter 21
Splay Trees



Copyright] 1996 by Addison-Wesley Publishing Company 244

(4) (4
OBNO ® G
©J6 @

D

Rotate-to-root strategy applied when node 3 is accessed
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Insertion of 4 using rotate-to-root
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OO (2) (3)
o aa
@ € © D
D @

Sequential access of items takes quadratic time
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(P) . /®\

(X) C A

A B B

Zig case (normal single rotation)

(X)
D (P)
/
A B ¢

Zig-zag case (same as a double rotation); symmetric case
omitted

Zig-zig case (this is unique to the splay tree); symmetric
case omitted
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Result of splaying at node 1 (three zig-zigs and a zig)
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(4) ()
@ ©® _, @ O_, @6 O_,
O 60 06 &®
@ ® (

The Remove operation applied to node 6: First 6 is

splayed to the root, leaving two subtrees; a FindMax on
the left subtree is performed, raising 5 to the root of the left
subtree; then the right subtree can be attached (not shown)
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AAHA

Top-down splay rotations: zig (top), zig-zig (middle), and
zig-zag (bottom)
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AA%A

Simplified top-down zig-zag
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AT

A

Final arrangement for top-down splaying
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Empty

C

Steps in top-down splay (accessing 19 in top tree)
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Chapter 22

Merging Priority Queues
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" eae

Simplistic merging of heap-ordered trees; right paths are
merged
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(3 ©
G T e v " (@)
(®) @) ofR¢

oo

Merging of skew heap; right paths are merged, and the
result is made a left path
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A recursive viewpoint is as follows: LE be the tree with the
smaller root, and IeR be the other tree.

1.

w

If one tree is empty, the other can be used as the merged
result.

Otherwise, leTemj be the right subtree L.

MakeL'’s left subtree its new right subtree.

Make the result of the recursive mergeTemy andR the
new left subtree cL.

Skew heap algorithm (recursive viewpoint)
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Change in heavyl/light status after a merge
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Abstract representation of sample pairing heap

m@@\ (%)
(16-(18)

Actual representation of above pairing heap; dark line rep-
resents a pair of pointers that connect nodes in both direc-
tions
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Y de d

Recombination of siblings after a DeleteMin ; in each
merge the larger root tree is made the left child of the
smaller root tree: (a) the resulting trees; (b) after the first
pass; (c) after the first merge of the second pass; (d) after
the second merge of the second pass
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F>S

)

+ \E
Y

CompareAndLink merges two trees
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Chapter 23
The Disjoint Set Class
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A relation F is defined on a s¢€ if for every pair of elements
( ), 8, b0S,aRbis either true or false. a R [ is true, then
we say thaa is related tb. An equivalence relatic is a relatiorR
that satisfies three properties:

» Reflexivi aR ¢is true forallad S
 Symmetri:a R Lifand only ifb R a
» Transitive a R bandb R cimplies thaia R c

Definition of equivalence relation

263
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A graph G (left) and its minimum spanning tree
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&
& (S
6/'

&
S
&

(S
e

|
3%

Kruskal’s algorithm after each edge is considered

265



Copyright] 1996 by Addison-Wesley Publishing Company 266

The nearest common ancestor for each request in the pair
sequence (x,y), (u,2), (w,x), (z,w), (w,y), is A, C, A, B, and
y, respectively
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The sets immediately prior to the return from the recursive
call to D; D is marked as visited and NCA(D, v) is V’s
anchor to the current path
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After the recursive call from D returns, we merge the set
anchored by D into the set anchored by C and then com-
pute all NCA(C, v) for nodes v that are marked prior to
completing C'’s recursive call
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©@ © @@ 66 & 6 6 O

Forest and its eight elements, initially in different sets

@@@@ ® @
®

Forest after Union of trees with roots 4 and 5

269
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© ©O @ 6

(3 D
Forest after Union of trees with roots 6 and 7

© O o 6 @
OO
D

Forest after Union of trees with roots 4 and 6
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© O @ (4)
O ORRO
D

Forest formed by union-by-size, with size encoded as a
negative number
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Worst-case tree for N=16
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© @O @ (4)
O ORRO
D

Forest formed by union-by-height, with height encoded as
a negative number
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(O
ORR OO (8) 12

® ©® W © 1w @
@ 1D

Path compression resulting from a Find (14) on the tree in
Figure 23.12
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Ackerman’s function is defined as:

A )=2 j=1
Al )= A ) |2
AC )= A ) hiz2

From this, we define the inverse Ackerman’s function as

o ( )= min{ | L }

Ackerman’s function and its inverse
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To incorporate path compression into the proof, we use the fol-
lowing fancy accounting: For each noden the path from the
accessed nodeo the root, we deposit one penny under one of two
accounts:

1. If vis the root, or if the parent #fis the root, or if the par-
ent ofv is in a different rank group from then charge one
unit under this rule. This deposits an American penny into
the Kitty.

2. Otherwise, deposit a Canadian penny into the node.

Accounting used in union-find proof
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Group Rank

0 0

1

2

3.4
5 through 16
17 through 65536

65537 through 265536
7 Truly huge ranks
Actual partitioning of ranks into groups used in the union-
find proof

o O~ WN PP
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Quickselect algorithi 87

Using an array of pointers to < 88

Data structure used for in-place rearrange 89t

Chapter 9 Randomization 90

Distribution of lottery winners if expected number of winners 92
Poisson distributic 92

Chapter 10 Fun and Games 93

Sample word search g 94

Brute-force algorithm for word search pu: 95

Alternate algorithm for word search puz 96

Improved algorithm for word search puzzle; incorporates a pref 97st

Basic minimax algorithi 98

Alpha-beta pruning: After 2A is evaluated, 2, which is the minimum of the?2's, is at best a
draw. Consequently, it cannot be an improvement o1. We therefore do not need to
evaluate 2B, H2C, and 2D, and can proceed directly t3 99

Two searches that arrive at identical posit 100

Chapter 11 Stacks and Compilers 101

Stack operations in balanced symbol algor 102
Steps in evaluation of a postfix expres: 103
Associativity rule 104

Various cases in operator precedence pe 105
Infix to postfix conversio 106

Expression tree fc(a+b)*(c-d) 107

Chapter 12 Utilites 108

A standard coding schel 109

Representation of the original code by a 110

A slightly better tre 111

Optimal prefix code tre 112

Optimal prefix cod 113

Huffman’s algorithm after each of first three melr 114

Huffman’s algorithm after each of last three me 115

Encoding table (numbers on left are array ind 116

IdNode data memberWord is aString ; Lines is a pointer to Queue 117

The object in the tree is a copy of the temporary; after the insertion is complete, the destructor is
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called for the tempora 118

Chapter 13 Simulation 119

The Josephus proble 120

Sample output for the modem bank simulation: 3 modems; a dial in is attempted every minute; av-
erage connect time is 5 minutes; simulation is run for 19 mi 12%

Steps in the simulatic 122

Priority queue for modem bank after each 123

Chapter 14 Graphs and Paths 124

A directed grap 125

Adjacency list representation of graph in Figure 14.1; nodes i represent vertices adjacent to
I and the cost of the connecting e 126

Information maintained by the Graph te 127

Data structures used in a shortest path calculation, with input graph taken from a file: shortest
weighted path fronAtoCis:AtoBtoEtoDtoC (cost 76 128

Graph after marking the start node as reachable in zero 122s

Graph after finding all vertices whose path length from the sta 13Q

Graph after finding all vertices whose shortest path from the ste 1312

Final shortest patl 132

How the graph is searched in unweighted shortest path comp 133n

Eyeball is av; w is adjacentDw should be lowered tc 134

If Dv is minimal among all unseen vertices and all edge costs are nonnegative, then it represents
the shortest pa 135

Stages of Dijkstra’s algorith 136

Graph with negative cost cyt 137

Topological soi 138

Stages of acyclic graph algoritl 139

Activity-node grap 140

Top: Event node grap; Bottom: Earliest completion time, latest completion time, and slack (addi-
tional edge iten 141

Chapter 15 Stacks and Queues 142

How the stack routines work: empty staPush(A) , Push(B) , Pop 143
Basic array implementation of the qu 144

Array implementation of the queue with wraparc 145

Linked list implementation of the ste 146

Linked list implementation of the que 147

Enqueue operation for linked-list-based implementa 148

Chapter 16 Linked Lists 149
Basic linked lis 150
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Insertion into a linked list: create new noTmrg), copy inX, setTmg’s next pointer, seCur-
rent 's next pointe 151

Deletion from a linked li¢ 152

Using a header node for the linked 153

Empty list when header node isu 154

Doubly linked lis 155

Empty doubly linked lic 156

Insertion into a doubly linked list by getting new node and then changing pointers in order indicat-
ec 157

Circular doubly linked lis 158

Chapter 17 Trees 159

Atree 160

Tree viewed recursive 161

First child/next sibling representation of tree in Figure 162

UNIX directory 163

The directory listing for tree in Figure 1 164

UNIX directory with file size 165

Trace of theSize functior 166

Uses of binary trees: left is an expression tree and right is a Huffman cod 167e
Result of a naivMerge operatiol 168

Aliasing problems in thMerge operationT1 is also the current obje 169
Recursive view used to calculate the size ofaST=SL+SR+1 170
Recursive view of node height calculatiHT = Max(HL+1,HR+1) 171
Preorder, postorder, and inorder visitation rc 172

Stack states during postorder trave 173

Chapter 18 Binary Search Trees 174

Two binary trees (only the left tree is a search 175

Binary search trees before and after insert 176

Deletion of node 5 with one child, before and ¢ 177

Deletion of node 2 with two children, before and ¢ 178

Using theSize data member to implemeFindKth 179

Balanced tree on the left has a depth oiN; unbalanced tree on the right has a depN-1 180

Binary search trees that can result from inserting a permutation 1, 2, and 3; the balanced tree in the
middle is twice as likely as any otl 181

Two binary search trees: the left tree is an AVL tree, but the right tree is not (unbalanced nodes are
darkenec 182

Minimum tree of heighH 183

Single rotation to fix case 184

Single rotation fixes AVL tree after insertion ¢ 185

Symmetric single rotation to fix cas 186

Single rotation does not fix cas 187

Left-right double rotation to fix case 188
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Double rotation fixes AVL tree after insertion ¢ 189

Left-right double rotation to fix case 190

Red black tree properti 191

Example of a red black tree; insertion sequence is 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5,
55) 192

If Sis black, then a single rotation between the parent and grandparent, with appropriate color
changes, restores property X is an outside grandch 193

If Sis black, then a double rotation involviX, the parent, and the grandparent, with appropriate
color changes, restores property X is an inside grandchi 194

If Sis red, then a single rotation between the parent and grandparent, with appropriate color chang-
es, restores property 3 betweX andP 195

Color flip; only if X's parent is red do we continue with a rota 196

Color flip at 50 induces a violation; because it is outside, a single rotation 197it

Result of single rotation that fixes violation at nod 198

Insertion of 45 as a red nc 199

Deletion:X has two black children, and both of its sibling’s children are black; do a co 20(

Deletion:X has two black children, and the outer child of its sibling is red; do a single r 20Dbn

Deletion:X has two black children, and the inner child of its sibling is red; do a double r 202n

X'is black and at least one child is red; if we fall through to next level and land on a red child, ev-
erything is good; if not, we rotate a sibling and p: 203

AA-tree propertie 204

AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40,5 2035

Skew is a simple rotation betweX andP 206

Split is a simple rotation betweiX andR; note thaR'’s level increase 207

After inserting 45 into sample tree; consecutive horizontal links are introduced startir 20835

After Split  at 35; introduces a left horizontal link ai 208

After Skew at 50; introduces consecutive horizontal nodes starting 208

After Split  at 40; 50 is now on the same level as 70, thus inducing an illegal left horizor al link
209

After Skew at 70; this introduces consecutive horizontal links . 209

After Split  at 30; insertion is comple 209

When 1 is deleted, all nodes become level 1, introducing horizontal lee 210s

Five-ary tree of 31 nodes has only three le 211

B-tree of order 212

B-tree propertie 213

B-tree after insertion of 57 into tree in Figure 1t 214

Insertion of 55 in B-tree in Figure 18.71 causes a splitinto two | 215

Insertion of 40 in B-tree in Figure 18.72 causes a split into two leaves and then a split of the parent
node 216

B-tree after deletion of 99 from Figure 1€ 217

Chapter 19 Hash Tables 218

Linear probing hash table after each inse 219
Quadratic probing hash table after each insertion (note that the table size is poorly chosen because
it is not a prime numbe 220
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Chapter 20 A Priority Queue: The Binary Heap 221

A complete binary tree and its array represent 222

Heap order proper 223

Two complete trees (only the lefttreeisa h 224

Attempt to insert 14, creating the hole and bubbling the hc 225

The remaining two steps to insert 14 in previous 226

Creation of the hole at the rc 227

Next two steps iDeleteMin 228

Last two steps iDeleteMin 229

Recursive view of the he 230

Initial heap (left); aftePercolateDown(7) (right) 231

After PercolateDown(6) (left); afterPercolateDown(5) (right) 231

After PercolateDown(4) (left); afterPercolateDown(3) (right) 232

After PercolateDown(2) (left); afterPercolateDown(1l)  andFixHeap terminates (righ
232

Marking of left edges for height one no 233

Marking of first left and subsequent right edge for height two r 233

Marking of first left and subsequent two right edges for height three 234s

Marking of first left and subsequent right edges for height 4 234

(Max) Heap afteFixHeap phas 235

Heapsort algorithi 236

Heap after firsDeleteMax 237

Heap after secorDeleteMax 237

Initial tape configuratio 238

Distribution of length 3 runs onto two ta; 239

Tapes after first round of merging (run length 239

Tapes after second round of merging (run length - 239

Tapes after third round of merg 239

Initial distribution of length 3 runs onto three ta 240

After one round of three-way merging (run length 240

After two rounds of three-way mergi 240

Number of runs using polyphase me 241

Example of run constructic 242

Chapter 21 Splay Trees 243

Rotate-to-root strategy applied when node 3 is acc 244

Insertion of 4 using rotate-to-r¢ 245

Sequential access of items takes quadratic 246

Zig case (normal single rotatic 247

Zig-zag case (same as a double rotation); symmetric case « 247%d

Zig-zig case (this is unique to the splay tree); symmetric case o 241

Result of splaying at node 1 (three zig-zigs and ¢ 248

The Remove operation applied to node 6: First 6 is splayed to the root, leaving two subtrees; a
FindMax on the left subtree is performed, raising 5 to the root of the left subtree; then the
right subtree can be attached (not shc 249
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Top-down splay rotations: zig (top), zig-zig (middle), and zig-zag (bo 250
Simplified top-down zig-ze 251

Final arrangement for top-down splay 252

Steps in top-down splay (accessing 19 intop 253

Chapter 22 Merging Priority Queues 254

Simplistic merging of heap-ordered trees; right paths are m 254

Merging of skew heap; right paths are merged, and the result is made a 25@th

Skew heap algorithm (recursive viewpo 257

Change in heavy/light status after a m: 258

Abstract representation of sample pairing | 259

Actual representation of above pairing heap; dark line represents a pair of pointers that connect
nodes in both directio 259

Recombination of siblings afteiDeleteMin ; in each merge the larger root tree is made the left
child of the smaller root tree: (a) the resulting trees; (b) after the first pass; (c) after the first
merge of the second pass; (d) after the second merge of the sect 260ass

CompareAndLink merges two tret 261

Chapter 23 The Disjoint Set Class 262

Definition of equivalence relatic 263

A graphG (left) and its minimum spanning ti 264

Kruskal's algorithm after each edge is consid 265

The nearest common ancestor for each request in the pair sewx,y), (U,2), (W,X), (z,w), (W,y),
isA, C, A, B, andy, respectivel 266

The sets immediately prior to the return from the recursive cD); D is marked as visited and
NCA(D, v) isv’s anchor to the current pi 267

After the recursive call frorD returns, we merge the set anchoreD into the set anchored by
C and then compute éeNCA(C, v) for nodesv that are marked prior to completiC’s re-
cursive ca 268

Forest and its eight elements, initially in different 269

Forest afteUnion of trees with roots 4 anc 269

Forest afteUnion of trees with roots 6 anc 270

Forest afteUnion of trees with roots 4 anc 270

Forest formed by union-by-size, with size encoded as a negative r 271er

Worst-case tree f(N=1€ 272

Forest formed by union-by-height, with height encoded as a negative r 273er

Path compression resulting fronFind (14) on the tree in Figure 23. 274

Ackerman’s function and its inver 275

Accounting used in union-find prc 276

Actual partitioning of ranks into groups used in the union-find | 277



